BRNO | FACULTY

UNIVERSITY | OF INFORMATION
OF TECHNOLOGY TECHNOLOGY

http://excel.fit.vutbr.cz

Improving robustness of neural networks against

adversarial examples

Martin Gano*

Abstract

The main goal of this work is to design and implement the framework that yields robust neural
network model against whatever adversarial attack, while result models accuracy is not significantly
lower comparing to naturally trained model. Our approach is to minimize maximization the loss
function of the target model. Related work and our experiments lead us to the usage of Projected
gradient descent method as a reference attack, therefore, we train against data generated by PGD.
As a result, using the framework we can reach accuracy more than 90% against sophisticated
adversarial attacks on MNIST dataset. The greatest contribution of this work is an implementation
of adversarial attacks and defences against them because there misses any public implementation.

Keywords: Neural networks — Optimization — Machine learning

Supplementary Material: Downloadable Code

*xganom00@fit.vutbr.cz, Faculty of Information Technology, Brno University of Technology

Professionals are worried for a long time about using
neural networks in safety-critical applications. Safety-
critical systems are employed in many areas includ-
ing transport industries, medicine and defence [1], for
instance, autonomous cars or operating robots. The
reason of concern is the fact that neural networks con-
tain an enormous number of trainable parameters and
that’s why they are too complex for human comprehen-
sion, in other words, they are so-called black-boxes
for humans. Because of that, it is infeasible to ex-
plain or fix a misclassification, or another kind of error
caused by seemingly faultless model. A significant
danger comes with simple methods for creating adver-
sarial examples. An adversarial example is an almost
indistinguishable input from the original sample, how-
ever, it is misclassified [2]. This way can enemy affect
the result of model prediction (breaking face detec-

tion, fooling autonomous car, etc...) and manipulate
the target application. In some extreme cases, this
kind of attack can result in fatal consequences like
serious endangerment humans health, life or property.
It will never be possible to resist all kinds of attacks
used by enemies. They keep improving their criminal
strategies and will probably never stop. However, we
have no other choice, but to continue on this research,
which leads to improving safety and robustness of all
machine learning models.

The main contribution of this work is the frame-
work that enables to perform adversarial training for
any neural network architecture with any dataset and
that is important for experimenting with adversarial
attacks and defences to make progress in this field of
research. There’s a strong need for such a tool because
there’s no available public implementation of defence
methods for general usage. We must mention frame-

http://excel.fit.vutbr.cz
https://github.com/sio13/turtleNet
mailto:xganom00@fit.vutbr.cz

v
+.007 x =

sign(V..J(0,2,v))

T+
esign(V,,J(0,x,1))
ibbon™

z

“nematode”

“vanda”
57.7% confidence 8.2% confidence 99.3 % confidence

Figure 1. Little perturbations can cause
misclassification of a model with high confidence.
Adapted from [2].

work Cleverhans with implemented attacks, however,
this work currently misses defence methods. Madry
et al. provided an implementation of adversarial train-
ing for some concrete model both for CIFAR10 and
MNIST datasets [3] but this is also not sufficient for
ML community and it’s the reason why we are present-
ing the general implementation of adversarial training
for any model in Python language using high-level
library Keras.

Notice, that the defence against adversarial attacks
(or adversaries) differs according to a type of attack.
Related work and our experiments gave us hypothesis,
that we can train a model that is robust to all attacks
(wrt. the distance between adversarial example and
natural sample), which are using only first-order in-
formation [3]. In other words, we are now able to
create model resistant to the whole class of attacks.
We have experimentally proven the hypothesis for few
white-box attacks implemented by lan Goodfellow et
al." and our implementation of Generative adversarial
network designed for generating adversarial samples
called AdvGAN [4]. All these attacks were not able to
decrease the network’s accuracy under 90%. There are
no other methods of attack that first-order used in this
work.

This section contains definitions and explanations of
important terms used in this paper.

2.1 Adversarial example

Informally, it is a sample, which is almost indistin-
guishable from the original sample for human, while
the model misclassified it. A valid explanation is also
that it is a little perturbed original data, that are mis-
classified by the target model. We need also a formal
and unified definition of adversarial example. We need
a formal definition of adversarial example.

Definition 1 Adversarial example is such n-dimensional
vector x*? that there exists such n-dimensional vector
x in set of original data X that D(x*¥ x) < €, while

Mttps://github.com/Tensorflow/cleverhans

t(x“dv) 2 C, where D is some metric, € is a small con-
stant, t is target model and C is correct class of x.

Typical metrics used in previous work are L™ and
L? distances since they properly simulate similarity for
humans [3].

L™ metric, sometimes called Chebyshev distance
between two vectors is defined as the greatest value of
their differences along any coordinate dimension.

dchebyshev(xay) = mqu(abs(xiayi)) (D
L? metrics is also called Euclidean distance.
n
deuctidean (x,y) = Z(xi _yl')z (@)

I
—

1

where n is the dimension of the vector.

2.2 Robustness
The general definition of robustness is the ability of
a system to handle perturbations or errors that might
affect it without changing the initial configuration.
There’s a need to adapt this definition for the prob-
lem of robust optimization. Theoretically, it would be
really simple to define robustness using the definition
of adversarial examples this way: The model is robust
if it is not possible to generate any adversarial exam-
ple. This definition would be useless in most practical
cases because only models with 100% accuracy are
robust according to the mentioned definition. Our defi-
nition must cover this case, but also must to be much
weaker to make it feasible to realize it.

Definition 2 An optimal model is robust if it stays
optimal under any allowed perturbation of input data.

Definition 2 is valid but we need a more specific one
for the final evaluation of robustness.

Definition 3 Let a,,; be an accuracy of optimal tar-
get model t evaluated on natural data and a,g, is an
accuracy of t evaluated on adversarial examples X%
generated by any method, while for each sample Xi"d"
of XY exists X]'f‘” such that d (Xi“dV,X J’?‘”) < €, where
d is some metric and € is small constant distance. Then
t is robust if apg — aggy < ¢, where c is constant value.

2.3 Transferability phenomenon

Many black-box methods are based on so-called trans-
ferability phenomenon. According to [5] are adver-
sarial examples transferable between neural network
architectures i.e. black-box attacks often rely on that

https://github.com/Tensorflow/cleverhans

generating malignant samples against the target model
will be also harmful to another one.

According to Madry et al. [3] it is also useful for
the attacker to choose suitable model because training
only against strongest models doesn’t guarantee that
the adversarial samples will be most transferable as
they could.

2.4 Adversarial attack

Generally, we understand finding adversarial examples
as a constrained optimization problem. For this pa-
per, we are defining adversarial attacks as functions
with a variable amount of parameters and the function
returns adversarial examples (see the subsection 2.1).
The number of attack parameters differs according to
the type of attack and used method. It is common for
attacks to take as an argument real data with their la-
bels - this is an essential variable for any kind of attack.
Sometimes the original data is used for training adver-
sarial models (e.g. Adversarial generative networks)
or in other cases the output data are deriving directly
from the original data (e.g. Fast gradient sign method).
Another possible parameter is the target model. This
is often (but not necessary) used, because we could
design our target model and expect that the real target
model will behave similar way (see 2.3). We distin-
guish two types of adversarial methods, according to
information about the model that is passed as an argu-
ment. If adversarial functions don’t access to target
models parameters, the method is called black-box.
The second type is called white-box attacks. We con-
sider attack as a white-box when the enemy has access
to all model parameters and the whole model structure.

Szegedy at al. in 2014 [6] demonstrated few properties
of neural networks, including but not limited to fact
that one adversarial sample is often misclassified by
few models, neural networks are vulnerable to adver-
sarial examples and interesting phenomenon that some
adversarial examples (for some dataset) are indistin-
guishable for human. Our understanding danger of
adversarial examples in neural networks is based on
these observations.

After that Ian Goodfellow et al. explained adver-
sarial examples in [2]. They showed strategies that
could generate adversarial samples to fool even the
most precise neural networks with really little compu-
tation sources. Mentioned work proposed method like
FGSM and Basic Iterative Method, that we adapted for
our experiments and our extended implementation of
these methods is an important part of the framework

presented in this work.

Framework for safety verification of neural net-
works was proposed by Huang et al. [7]. The frame-
work guarantees to find all existing adversarial exam-
ples by exhaustive search around the region of original
sample implemented by technologies like Z3.

Research by Kurakin et al. [8] brought us a few
ideas about adversarial training including a summary
of attacks. They demonstrated the transferability phe-
nomenon, label leaking and difference between ad-
versarial training using one-step attacks and iterative
methods (with many steps). This will be explained
later in this paper.

We adapted approach to adversarial training in-
troduced by a group of scientist from MIT in their
paper [3]. In this work, they proposed hypothesis, that
if the neural network is robust against PGD (Projected
gradient descent) attack, it is also robust against every
other first-order attack. This statement is experimen-
tally proven in the mentioned paper and also in my
work against several adversarial attacks. The men-
tioned paper also studies the relationship between net-
work architecture and capacity with robustness. They
show, that the larger networks handle adversarial exam-
ples better than smaller networks with similar accuracy
on natural data. The result of their work is a model
that achieves more than 89% accuracy against state-of-
the-art attacks (on MNIST data).

The method that attacked most successfully ro-
bust model trained using defence by Madry is ex-
tended implementation of Generative adversarial net-
works (GAN) [4]. GAN was proposed by Ian Good-
fellow et al. [9]. Authors created a framework called
AdvGAN for perturbing original data to adversarial
examples.

The term Adversarial attack was explained in subsec-
tion 2.4 and we are using terms adversarial method
and adversarial attack with the same meaning. In this
section, I will describe the methods used for creating
adversarial examples and evaluating the robustness
of the target model. All methods use only first-order
information.

4.1 Fast gradient sign method

The method was firstly proposed by lan Goodfellow et
al. in 2015. It is based on computing an adversarial im-
age by adding a perturbation with magnitude one pixel
in the direction of the gradient, thus this method is
certainly white-box attack. The formula for computing

http://www.mit.edu/

result sample is
xadv =X +exsign(V,L(X,Y)) 3)

where X4 is adversarial sample, X is original sample,
€ is size of perturbation, L is loss function, Y is label
of original data and sign(x) is function that returns —1
ifx<0;0ifx=0and 1ifx > 0.

The method is very efficient in terms of computa-
tion time because it is computed just with one single
step. [8]

4.2 Basic iterative method

The basic iterative method is a straightforward exten-
sion of FGSM 4.1, that is applied in iterations with
small step size and we need to clip pixel values after
each step - this ensures that they are in £-ball of origi-
nal data sample [10]. As X,‘fdv we denote adversarial
example computing with n iterations. To compute X%¢"
we first need to set ngv as follows:a

X =x 4)

and to compute X%?” we use this formula:

X3® = clipx (X% + o x sign(VL(X37,Y)} (5)
where sign(x) is function with same meaning as
in Equation 4.1 and clipx ¢(xP*"") is a function that
returns x7¢"" if D(X,xP*"") < g, otherwise it returns
nearest point to x”¢’ that is within &-ball around X.
This method also requires access to model param-
eters, so we consider it as a white-box attack.

4.3 Projected gradient descent

Projected gradient descent (PGD) is the most success-
ful white-box method mentioned in this work. Cause
this is a key method for the model robustness, it will
be described more detailed and with special attention.
Similarly, as methods mentioned above, we are using
PGD to find such adversarial inputs, that maximize the
loss of the model while the distance between generated
data and original data according to certain metric does
not exceed €. Correctly chosen € (with the correctly
chosen norm) can guarantee, that generated examples
will be similar, or even indistinguishable, or at least
imperceptibly different to original samples.

The algorithm is an extension of both FGSM and
Basic iterative method. We first set ng" to random
point within the L? ball (in our case p = oo) with radius
of € same way as in equation 4. Then we make a
gradient step with size ¢ in the direction of greatest

Figure 2. PGD after n iterations found the highest
value for loss function. Figure is adopted from [12].

loss and project back to L? ball » (clip) as in equation
5. Then we apply equation 5 until convergence, i.e.
until the value of loss function slows down increasing
from step to step [11] as you can see in the figure 2.

4.4 Generative adversarial networks

Method firstly proposed by Ian Goodfellow et al. in
2014 [9]. The main principal of Generative adversar-
ial networks (GAN) is that two networks are fighting
against each other. These networks are usually called
discriminator D and generator G. G generates samples
and D evaluates probability that sample comes from
original data or is generated by G. Goal of G is to
maximize error rate of D, which is, certainly, trying
to have the best accuracy in classifying samples. This
leads to saddle point problem and to treat it through
the lens of Game theory the GAN’s trying to find Nash
equilibrium. Networks D and G are playing 2-player
minimax game with value function V (G, D):

min max V(G,D) =
G D

EX ~ pyaa(x) [108(D(X))]

+ Ezp(2)[log(1-D(G(2)))]
(6)

4.4.1 GAN for generating adversarial examples

In 2019 was proposed framework AdvGAN in [4]
and took the first place in MNIST Challenge’ in the
black-box category. This is the only one black-box
attack described and used in this paper. The purpose
of this framework is to train generator to be able to
generate perturbations from the original data - after the
model is trained, there is no need to access any target
model. This is also a reason why is AdvGAN much

2projecting back to L? ball means to move to the closet point
inside the LP ball
3In the time of writing this work it is still the best submission

https://github.com/MadryLab/mnist_challenge

more effective than other adversarial attacks. When
the generator is trained, we can generate perturbation
for a sample using a feed-forward network, while other
methods must apply gradient descent for every single
sample. Implementation of AdvGAN is an important
part of our framework that enables us to experiment
also with this black-box attack.

4.4.2 Architecture

Unlike many other GAN-based architectures, our gen-
erator does not take as an input random noise, but the
original instance. Output of G is a noise that is added
to original sample (see Figure 3). The perturbed sam-
ple X + G(x) goes into D along with original sample
and D distinguishes if x4+ G(x) and x are similar. At
the same time x+ G(x) takes target model f as an input
and returns the loss function L,,,, which represents
the distance between the predicted sample and target
class. The output of D is the adversarial loss [9]:

Lean =
EXdiamlog D(x) (7)
FEX~piaal08(1 =D(x+G(x)))

The loss of target model is:

Lad\, = EXdiamlf(X-l-G(x),t) (8)

where 7 is target class, f is target model and I is
loss function of target model. This loss is used for
a targeted attack, an untargeted attack could be per-
formed by maximizing the distance between prediction
and the sample’s label. We also need to constrain the
noise generated by G to prevent exceeding previously
defined c (see Definition 1). For this purpose we use
hinge loss, what is usual practise in previous work [13]
(unlike referenced work we use L™ norm instead of
L?). Hinge loss is formally expressed as follows:

Liinge = Expgp,max(L7(G(X)) —¢,0) (9)

Finally, the generator is trained on the objective
function

L = Lyay+ 0 Leay + B * Lhinge (10)

where a and B are experimentally chosen con-
stants and represent the relative importance of loss
functions.

Discriminator
~
|
|

Perturbed instance T
[|
Target white-box | [] |

[distilled black-box s— + — .« =

&

Original instance

Generator

Figure 3. Architecture of AdvGAN. Figure is
adopted from [4]

Our framework is designed to experiment with attacks
and defences and it provides a full implementation of
the method proposed by Madry et al. [3]. First of all,
we need to present and explain a few observations that
reasoned the correctness of methods in our framework.

5.1 Observations

Selection of parameters for our method is partially
based on these observations and they are also impor-
tant for building a robust model. We are providing
adversarial training for any model, however, for best
results user should beware these discoveries.

5.1.1 Capacity of network

Madry et al. in their work [3] show that just increas-
ing the network’s capacity helps increasing robustness
against adversarial examples, while the network is
trained only on natural samples. We can achieve only
small improvement by using better architecture on
natural data, but increasing capacity could improve
the accuracy of a network on adversarial examples by
more than 10%.

5.1.2 Label leaking

Observation by Kurakin et al. [8] that training on ad-
versarial examples generated by single-step methods
(especially FGSM) does not yield model robust against
other attack strategies, because models trained on such
samples use overfitting. We believe this is because
transformations by single-step methods are simple and
model can easily recognize them. The experiment sup-
porting this statement is described in subsection 6.3.1.

5.2 Saddle point problem

Defence strategy implemented in this work is based on
optimization problem called saddle point or minimax
problem. A saddle point is a point on the graph of a
function where the derivatives in orthogonal directions
are all zero, however it is not a local extreme. We
are finding such point to minimize maximization an
error of our model using adversarial methods Formal
expression of the task for our framework follows:

L?-bounded adversary L*-bounded adversary

Figure 4. Comparison training convergence of L2
and L~ norms. Figure is adopted from [12].

argmin E(W)ND[mgzx L(x+9,y,0)] (11

0
where 6 are model parameters, D is data distribu-
tion, L is loss function and § is perturbation such that
o € S, where S is set of allowed perturbations.

5.3 Optimization against PGD samples

The method is introduced by Madry et al. [3], they
also stated that the training model against PGD attacks
will satisfy robustness against all methods using only
first-order information.

5.3.1 Robustness wrt. first-order attacks
Every usage of first-order methods in this work will
refer to first-order methods in Optimization theory.
Generally, n-order methods is an algorithm that re-
quires at least one n-th derivation/gradient. In this
work are discussed only first-order methods.

It doesn’t matter what is the starting point of PGD
algorithm (we can select it randomly or set a starting
point as an original sample) - the local maximum losses
are almost the same in all cases. This suggests a view
on the problem in which robustness against the PGD-
generated samples yields robustness against all first-
order samples. There is still a possibility of existence
some local maximum with much higher value, but
according to experiments [3] it is hard to find.

This assumption implies that we can build model
robust against all first-order methods and the vast ma-
jority of optimization tasks in ML are solved using
first-order, therefore the framework can yield model
that is safe against state-of-the-art attacks.

This section contains reasoning for using hyperparam-
eters and experiments demonstrating the results of this
work. Every experiment uses € = 0.3 and we use only
one network architecture® in another case it will be
explicitly stated.

4Network architecture is defined here github.com/
siol3/turtleNet/blob/master/target_model.py

Dataset Natural | PGD |FGSM | BIM
MNIST 99.1% [6.9% |12.8% |7.4%
CIFAR10 |70.6% |5.5%|8.1% [12.1%
CIFAR100(29.8% |1.2%|1.3% |2.2%

Table 1. Comparing three attacks on three models

6.1 Choosing the norm and value of ¢

For the problem of adversarial examples are commonly
used two norms - L2 and L*. According to [12] is
experimentally shown that using L* it is possible to
generate effective adversarial examples using 10 times
smaller € (see Figure 4). In the Figure 4 we can also
see that it is useless to use greater € than 0.3 (measured
with the L™ norm) for generating adversarial examples,
and this also the reason why we are using this value of
€ is this work.

6.2 Attacking network
In this experiment, we demonstrate the vulnerability of
neural networks by using three attack strategies. Target
models trained on MNIST, CIFAR10 and CIFAR100
datasets achieve accuracy outstanding accuracy. By
applying FGSM attack we can generate 10000 malign
samples on which models achieve significantly lower
accuracy and the generation process is really fast (for
imagination it won’t last more than 10 seconds on any
laptop). On the other hand, the most successful attack
was PGD, as we expected. Target models achieve an
accuracy as little below 10% for all datasets. Gener-
ation process lasted about 10-times more than with
FGSM. See the experiment results in Table 1.
Another experiment with adversarial attacks was
more focused on MNIST trained model. For more
detailed statistics see Figure 6. Notice, that the fastest
attack is with method AdvGAN because the adversar-
ial generator is already trained.

6.3 Comparison of target adversaries

This subsection contains experiments related to train-
ing against adversarial examples generated by some
methods and comparison of its results.

6.3.1 Single-step method

The first approach to train model against adversarial
examples was trying to train it using FGSM examples.
This method seems to work well against FGSM ex-
amples and is also effective. Since it is a one-step
method and it is much faster than iterative methods.
Training with these samples and a suitable number of
iterations yields model that achieves against FGSM
accuracy more than 80%, but against other methods, it
fails (see Figure 5). This behaviour is probably caused

github.com/sio13/turtleNet/blob/master/target_model.py
github.com/sio13/turtleNet/blob/master/target_model.py

FGSM Basic Iterative Method Projected Gradient Descent

Figure 5. Comparison training accuracy of a model
trained on FGSM examples against 3 adversarial
methods.

curacy loss

9,61143680114746

12.184943614196778

14.372136480712891

12217894227600098

None 0.9886000156402588 0.0405¢ 9995

Figure 6. Table showing damage of attacks to the
naturally trained network.

FGSM Basic Iterative Method Projected Gradient Descent

Figure 7. Comparison training accuracy of a model
trained on PGD examples against 3 adversarial
methods.

by overfitting to samples generated using a too simple
method (see subsection 5.1.2).

Training against this method is just slightly better
than no adversarial training 6. After about 200 iteration
training with FGSM samples model achieves just less
than 20%, which is not much more comparing to 6.5%
achieved by naturally trained model.

6.3.2 PGD for training

Another and much more successful method for adver-
sarial training is using PGD samples training. The
method is much more resources consuming because
it requires a high amount of iterations and every it-
eration requires the generation of PGD samples, but
it converges to high accuracy. Using this method we
can achieve accuracy more than 90% against attacks
showed in Figure 7. Robustness was demonstrated
also against other first-order methods, all experiments
are visualized in the public repository”.

Along with this work, we implemented a Python li-
brary called furtleNet with the implemented method
for attacking and training a robust network.

Shttps://github.com/siol3/turtleNet/tree/
master/result_pictures

This work also provided evidence about the vulner-
ability of neural networks to synthetically generated
malignant samples. We also showed and implemented
the solution for this issue as a part of furtleNet and
experimentally proved that it relatively satisfies cur-
rent requirements. Our implementation should be used
for further experiments and for performing adversarial
training on many other models. The main advantage of
the framework is a possibility to make robust a model
implemented using Keras or any other library. The
only requirement is to convert a model into h5 for-
mat. We also provide an easy way to verify models
robustness using several adversarial attacks.

Even we showed that we can face first-order ad-
versaries, which are most common and easy to realize,
there are still ways how to attack resistant model with
high damage. It is almost clear that enemies will al-
ways improve their strategies and the only way how to
keep this field safe is to constantly research new and
better defence methods.

This research does not aim to change the world.
It’s main and greatest goal is to prevent changing world
of machine learning and Al the way we don’t want to.

7.0.1 Weaknesses

Our research assumes some constant value of €, how-
ever, there exist samples with high distance from orig-
inal data, but looks similar, therefore there is still a
possibility to easily generate adversarial examples with
higher €, which look pretty similar to natural data and
fool the mode this way.

7.0.2 Future work

The following research should investigate higher-order
attacks and explore possibilities to fool our robust
model. An idea behind rurtleNet is to create software
that unifies a large amount of attack and defence strate-
gies for neural networks. This goal is not satisfied at
all and it requires a lot of work in the future.

I would like to thank my supervisor RNDr. Milan
Ceska, Ph.D. for his help.

[1] Zeshan Kurd, Tim Kelly, and Jim Austin. Devel-
oping artificial neural networks for safety critical
systems, 2006.

[2] TIan J. Goodfellow, Jonathon Shlens, and Chris-
tian Szegedy. Explaining and harnessing ad-
versarial examples, 2015. https://arxiv.
org/pdf/1412.6572.pdf.

https://github.com/sio13/turtleNet/tree/master/result_pictures
https://github.com/sio13/turtleNet/tree/master/result_pictures
https://arxiv.org/pdf/1412.6572.pdf
https://arxiv.org/pdf/1412.6572.pdf

[3]

[4]

[5]

[6]

[7]

[9]

[10]

[11]

[12]

[13]

Aleksander Madry, Aleksandar Makelov, Lud-
wig Schmidt, Dimitris Tsipras, and Adrian Vladu.
Towards deep learning models resistant to adver-
sarial attacks, 2019.

Chaowei Xiao, Bo Li, Jun-Yan Zhu, Warren He,
Mingyan Liu, and Dawn Song. Generating adver-
sarial examples with adversarial networks, 2019.

Nicolas Papernot, Patrick McDaniel, Ian Good-
fellow, Somesh Jha, Z. Berkay Celik, and Anan-
thram Swami. Practical black-box attacks against
machine learning, 2017. https://arxiv.
org/pdf/1602.02697.pdf.

Christian Szegedy, Wojciech Zaremba, Ilya
Sutskever, Joan Bruna, Dumitru Erhan, Ian Good-
fellow, and Rob Fergus. Intriguing properties
of neural networks, 2014. https://arxiv.
org/pdf/1312.6199.pdf.

Xiaowei Huang, Marta Kwiatkowska, Sen Wang,
and Min Wu. Safety verification of deep neu-
ral networks, 2016. https://arxiv.org/
pdf/1610.06940.pdf.

Alexey Kurakin, Ian J. Goodfellow, and Samy
Bengio. Adversarial machine learning at scale,
2017. https://arxiv.org/pdf/1611.
01236.pdf.

Ian J. Goodfellow, Jean Pouget-Abadie, Mehdi
Mirza, David Warde-Farley Bing Xu, Sherjil
Ozair, Aaron Courville, and Yoshua Bengio.
Generative adversarial nets, 2014. https://
arxiv.org/pdf/1406.2661.pdf.

Alexey Kurakin, Ian J. Goodfellow, and Samy
Bengio. Adversarial examples in the physical
world, 2017. https://arxiv.org/pdf/
1607.02533.pdf.

Tianhang Zheng, Changyou Chen, and Kui Ren.
Is pgd-adversarial training necessary? alterna-
tive training via a soft-quantization network with
noisy-natural samples only, 2019. https://
arxiv.org/abs/1810.05665.

Oscar Knagg. Know your enemy, 2019.
https://towardsdatascience.com/
know-your—enemy—-7£7c5038bd£f3.

Nicholas Carlini and David Wagner. Towards
evaluating the robustness of neural networks,
2017. https://arxiv.org/pdf/1608.
04644 .pdf.

https://arxiv.org/pdf/1602.02697.pdf
https://arxiv.org/pdf/1602.02697.pdf
https://arxiv.org/pdf/1312.6199.pdf
https://arxiv.org/pdf/1312.6199.pdf
https://arxiv.org/pdf/1610.06940.pdf
https://arxiv.org/pdf/1610.06940.pdf
https://arxiv.org/pdf/1611.01236.pdf
https://arxiv.org/pdf/1611.01236.pdf
https://arxiv.org/pdf/1406.2661.pdf
https://arxiv.org/pdf/1406.2661.pdf
https://arxiv.org/pdf/1607.02533.pdf
https://arxiv.org/pdf/1607.02533.pdf
https://arxiv.org/abs/1810.05665
https://arxiv.org/abs/1810.05665
https://towardsdatascience.com/know-your-enemy-7f7c5038bdf3
https://towardsdatascience.com/know-your-enemy-7f7c5038bdf3
https://arxiv.org/pdf/1608.04644.pdf
https://arxiv.org/pdf/1608.04644.pdf

	Introduction
	Background
	Related work
	Adversarial methods
	Defence
	Experiments
	Conclusions
	References

