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Inclusion of Regular Expressions with Counting
David Mikšanı́k*

Abstract
We present an algorithm solving the inclusion problem for regular expressions with the counting
operator limited to character classes, the so-called extended regular expressions (eREs), which are
common in practice. Such regular expressions do not extend expressiveness beyond regularity, but
allow one to succinctly express repeated patterns. Our algorithm is based on the transformation
eREs into monadic counting automata (MCAs), i.e., finite automata with counting loops on character
class where each counter is bounded. Similarly to the classical algorithm, we transform eREs into
automata, but now we use MCAs instead of nondeterministic finite automata (NFAs). Following
by building the product of MCAs and searching for a final state in the product. MCAs are compact
representation of eREs because the number of states in MCAs does not depend on the bounds
used in the counting operator, in contrast to NFAs where the number of states grows linearly.
These bounds can be large in practice, thus MCAs are often significantly smaller than NFAs. We
provide several examples for which the classical algorithm working with NFAs does not terminate in
a reasonable amount of time, but our algorithm does. We also hope that our algorithm outperforms
the classical algorithm in general, especially if the bounds of the counting operators are large.
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1. Introduction

Regular expressions with the counting operator limited
to character classes, we called them extended regular
expressions (eREs), have the same expressive power
as the standard regular expressions (REs). The pur-
pose of eREs is a succinct expression of some regular
expressions such as [abc]{5,10} representing all
strings of the length 5–10 where each symbol of the
string is a, b, or c. Usually the eREs also contain
other well-known operators, e.g., + or ?, but such op-
erators do not bring the succinctness as the counting
operator. Sometimes the restriction of appearing count-
ing operator only in the character classes is omitted
(e.g., (abc){5,10} denoting all strings where abc
appears 5–10 times). In [1], it was observed that in
practice the regular expressions mostly use only count-
ing operator limited to character classes (e.g., in the
Snort rules [2] used for finding attacks in network traf-
fic; or in the RegExLib library [3], which collects ex-
pressions for recognizing URIs, markup code to name

a few). For these reasons, we limit ourselves only
to eREs with counting operator limited to character
classes.

Although there are several automata models that
are capable of representing regular expressions in as
succinct way as the eREs (e.g., [1, 4, 5]), for the best
of our knowledge all algorithms solving the inclusion
problem for eREs work with NFAs—eREs are trans-
forming to NFAs directly or from any of the model
above. In each case the advantage of the compact repre-
sentation is lost. In this work we develop an algorithm
that avoids such transformation to NFAs.

The inclusion problem for REs consists of two
inputs REs r1, r2 and the question whether the lan-
guage that r1 denotes is included in the language that
r2 denotes, symbolically we need to decide whether
L(r1) ⊆ L(r2). The language of regular expressions
is defined as usual. The inclusion problem for eREs
is the same as the problem above except that r1,r2
can contain the counting operator limited to character
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classes. This problem can arise in any Intrusion De-
tection System (IDS). Suppose the following scenario.
Let α be eRE that representing all packets in network
traffic that are possible dangerous (or interesting). But
you want to detect more packets that are dangerous.
Thus you construct an eRE β . Because you want to
be sure that β is as strong as α , you need test whether
L(α) ⊆ L(β ). If it is true, then you know that the
replacement α by β is safe.

General solutions to the inclusion problem for
eREs start with constructing NFAs N1,N2 for each of
the input eRE. Then is used the algorithm for testing
language inclusion for the NFAs. How was proposed
in [6], these algorithms can be categorized into two
types: (1) those based on subset construction build a
product automaton N1×N2 of N1 and the complement
of N2 and search for a final state; (2) those based on
simulation (e.g., [7]) first compute a simulation rela-
tion on N1 ∪N2 and then check if all initial states of
N1 can be simulated by some initial state of N2. Usu-
ally (2) is better than (1) because the computation of
simulation is done in polynomial time. But the main
drawback of (2) is that it is incomplete—simulation
implies language inclusion, but not vice-versa. Con-
trary, the methods based on the subset construction
are complete, but the complementation of N2 requires
that N2 is deterministic, which can easily exponentially
blow up in the number of states.

As was mentioned above, there are several au-
tomata models for succinct representation of eREs.
From these models we choose one, called monadic
counting automata (MCAs), which are introduced in
[1, section 4.1]. Informally, they are finite automata
with bounded counters. Our algorithm for the inclu-
sion problem for eREs works similar as the methods
based on the subset construction. First, we transform
the input eREs into MCAs M1,M2. Second, we cre-
ate M2, the complement of M2, by determinizing and
completing M2 and then complementing the accept-
ing condition. Third, we build the product automaton
M1×M2 and search for a final state. We note that [1]
provide the algorithm for determinization of MCAs.
The problem is how to efficiently test whether a state
is reachable from the initial states. Such a test is not as
easy as for NFAs, because the next move of the MCA
does not depend only on the input symbol, but also on
the values of counters. The main contribution of this
paper is the algorithm for testing reachability of states
in the product automaton (see Section 3).

The advantages of our algorithm are showing when
the eREs contain a lot of counting operators and the
upper bound of the counting operator is large. For ex-

ample, if r1 = .*a.{k},r2 = .*a.{k-1,k+1} the
methods based on NFAs do not terminate in a reason-
able time for relatively small values of k, but if we use
MCAs, then the problem is solvable for such values
of k. Eventually, our algorithm converges to the meth-
ods based on the subset construction if the eREs do
not contain any counting operator. In this case, it is
appropriate to use some method based on simulation
relation.

2. Counting Automata
A finite, non-empty set Σ of symbols is called an al-
phabet. A string is a sequence of symbols a1a2 . . .an

where ai ∈ Σ, for 1≤ i≤ n. The length of w is defined
as |w| = n. We use ε /∈ Σ to denote the empty string,
so |ε|= 0. The set of all strings over the alphabet Σ is
denoted by Σ∗.

The abstract syntax of the extended regular expres-
sions (eREs) is the following:

R ::= /0 | ε | σ | R1R2 | R1 +R2 | R∗ | σ{m,n}

where σ is a predicate denoting a set of alphabet sym-
bols, and n,m ∈ N. The semantics is defined as in the
standard regular expressions, with σ{n,m} denoting
a string w with n ≤ |w| ≤ m, where n ≤ m, symbols
each of them satisfying σ .

Monadic counting automata (MCAs) naturally arise
from eREs (see Figure 1). They are a restriction
of a more general concept called counting automata
(CAs). In this section, we provide necessary theory
background and give the definitions of CAs and MCAs,
following [1].

q> r {c === k}

>

l=== a,c′ = 0

c < k,c′ === c+1

Figure 1. A CA for the eRE .*a.{k}, which is also
an MCA with k ∈ N, I : s= q, F : s= r∧ c = k, and
∆ : q−{>,>,>}→q∨q−{l=a,>,c′=0}→r∨ r−{>,c<k,c′=c+1}→r.

2.1 Logical background
Let V be a set of variables V , and let Q be a set of
constants (disjoint with the set of natural numbers N
including zero), which will correspond to the set of
states in CAs. We define a Q-formula over V to be
a quantifier-free formula ϕ of Presburger arithmetic [8,
Section 3.3 ] extended with constants from Q and Σ,
i.e., a Boolean combination of (in-)equalities t1 = t2
or t1 ≤ t2 where t1 and t2 are constructed using +,N,
and V , and predicates of the form x = a or x = q for
x ∈V,a ∈ Σ, and q ∈ Q.



An assignment M to free variables of ϕ is a model
of ϕ , denoted as M |= ϕ , if it makes ϕ true. We use
sat(ϕ) to denote that ϕ has a model and we say that
ϕ is satisfiable. The semantics of a formula ϕ is the
set JϕK of all possible tuples of the free variables in ϕ

which make ϕ true. Suppose that C = {c1, . . . ,cn} are
the free variables in ϕ . The projection of ϕ on C is the
formula ∃c1, . . . ,cn : ϕ .

2.2 Labelled Transitions Systems
A labelled transition system (LTS) over Σ is a five-
tuple T = (Q,V, I,F,∆) where

• Q is a finite set of control states,
• V is a finite set of configuration variables,
• I is the initial Q-formula over V ,
• F is the final Q-formula over V , and
• ∆ is the transition Q-formula over V ∪V ′∪{l}

with V ′ = {x′ | x ∈V},V ∩V ′ = /0 , and l /∈V .

We call l the symbol variable and allow it as the only
term that can occur with a predicate l= a for a ∈ Σ,
called an atomic symbol guard. Moreover, l is also
not allowed to occur in any other predicates in ∆.

A configuration of LTS T is a function α :V→N∪
Q that maps every configuration variable to a number
from N or a state from Q. We will denote by C the
set of all configuration of the LTS T . The transition
relation J∆K⊆ C×Σ×C is encoded by the transition
formula ∆ as follows (α,a,α ′) ∈ J∆K iff α ∪ {x′ 7→
k | α ′(x) = k}∪ {l 7→ a} |= ∆. For a string w ∈ Σ∗,
we define inductively that a configuration α ′ is a w-
successor of α , written α

w−→ α ′, such that α
ε−→ α

for all α ∈ C, and α
av−→ iff α

a−→ α
v−→ α ′ for some

configuration α , a ∈ Σ, and v ∈ Σ∗. A configuration α

is initial if α |= I, and final if α |= F . The outcome of
T on a word w is the set outT (w) of all w-successors
of the initial configurations, and w is accepted by T if
outT (w) contains a final configuration. The language
L(T ) of T is the set of all words that T accepts.

2.3 Counting Automata
A (nondeterministic) counting automaton (CA) is a five-
tuple N = (Q,C, I,F,∆) such that (Q,V, I,F,∆) is an
LTS with the following properties:

1. The set of configuration variables V =C∪{s}
consists of a set of counters C and a single con-
trol state variable s such that s /∈C.

2. The transition formula ∆ is a disjunction of tran-
sitions, which are conjunctions of the form (s=
q)∧σ ∧g∧ f ∧ (s′ = r), denoted by q−{σ ,g, f}→r,
where q,r ∈ Q, σ is the transition’s guard for-
mula over {l}, g is the transition’s guard for-
mula over V , and f is the transition’s counter

assignment formula, a conjunction of atomic as-
signments to counters in which every counter is
assigned at most once.

3. There is a constant maxN ∈N such that no counter
can ever grow above that value.

Moreover, for every transition ϕ = q−{σ ,g, f}→r ∈ ∆, we
define the function sym that returns the transition’s
guard formula over {l}, that is sym(ϕ) := σ .

A deterministic counting automaton (DCA) is a
CA N where I has at most one model and, for every
a∈ Σ, every reachable configuration α has at most one
a-successor. A CA is complete if for any configuration
α ∈ C and every symbol a ∈ Σ the a-successor α ′ ∈ C.

2.4 Monadic Counting Automata
A (nondeterministic) monadic counting automaton
(MCA) is a CA M = (Q,C, I,F,∆) where the following
holds:

1. The set of control states is Q = Qs]Qc, where
Qs is a set of simple states and Qc is a set of
counting states.

2. The set of counters C = {cq | q ∈ Qc} consists
of a unique counter cq for every counting state
q ∈ Qc.

3. All transitions containing counter guards or up-
dates must be incident with a counting state in
the following manner. Every counting state q ∈
Qc has a single increment transition, a self-loop
q−{σ ,cq<maxq,c′q=cq+1}→q with the value of cq lim-
ited by the bound maxq of q, and possibly sev-
eral entry transitions of the form r−{σ ,>,c′q=0}→q,
which set cq to 0. As for exit transitions, every
counting states is either exact or range where
exact counting states have exit transitions of the
form q−{σ ,cq=maxq,>}→s and range counting state
have exit transitions of the from q−{σ ,>,>}→s with
s ∈ Q such that s 6= q.

4. The initial condition I is of the form

I :
∨

q∈QI
s

s= q∨
∨

q∈QI
c

(s= q∧ cq = 0)

for some sets of initial simple and counting
states QI

s ⊆ Qs and QI
c ⊆ Qc, respectively.

5. The final condition F is of the form

F :
∨

q∈QF
s ∪QF

r

s= q∨
∨

q∈QF
e

(s= q∧ cq = maxq)

where QF
s ⊆ Qs is a set of simple final states,

QF
r ⊆ Qr is a set o final range counting states,

and QF
e ⊆ Qe is a set of final exact counting

states.



3. The Inclusion Problem for Extended
Regular Expressions

Let r1,r2 be the input eREs of the inclusion problem.
Our solution starts with creating MCAs M1,M2 such
that L(r1) = L(M1) and L(r2) = L(M2). We need
to decide whether L(M1) ⊆ L(M2), or equivalently
L(M1)∩L(M2) = L(M1)∩L(M2) = /0. For conve-
nience, the automaton that recognize such a language
is called the product automaton, written M1×M2.

Traditionally, to complement M2 we need first de-
terminize M2. Since the determinization of an MCA
is not again an MCA, in Section 3.1 following [1],
we give a brief overview how the states in such au-
tomaton are represented. In Sections 3.2–3.4, we
present our algorithm for the inclusion problem for
eREs, namely how to build M1×M2 and how to test
whether L(M1)∩L(M2) = /0.

3.1 Determinization of Monadic Counting Au-
tomata

The crucial step in building the product automaton is
the determinization of M2. Fortunately, [1, Section 4.2]
provides the algorithm for determinization of MCAs.
We note that the result automaton of the algorithm is
not again an MCA, but the automaton has still some-
what restricted structure as we show in Section 3.4.
For that reason, all MCAs that are determinized by the
algorithm in [1, Section 4.2] are called determinized
MCAs (DMCAs).

Each state of a DMCA is represented by the notion
of sphere [1]:

Ψ :=
∨

q∈Q′s

s= q∨
∨

q∈Q′c

(
s= q∧

∨
0≤i≤max′q

cq = cq[i]
)

(1)

for some Q′s ⊆ Qs, Q′c ⊆ Qc, and max′q ≤maxq. That
is, a sphere Ψ records which states may be reached
in the original MCA when Ψ is reached in the deter-
minized MCA and also which variants of the counter
cq may record the value of cq when q is reached.

The spheres can be also represented by a multi-
set of states. By a slight abuse of notation, we use Ψ

for the sphere itself as well as for its multiset repre-
sentation Ψ : Q→ N. The fact that Ψ(q) > 0 means
that q is present in the sphere, i.e., s = q is a pred-
icate in (1), and for a counting state q, the counters
cq[0], . . . ,cq[Ψ(q)−1] are the Ψ(q) variants cq tracked
in the sphere. i.e., max′q = Ψ(q) in (1).

3.2 Product Construction of Monadic Count-
ing Automata

First, we need to compute M2, the complement of M2.
Since we know how to determinize MCAs, it remains
to complete the determinization of MCA. Let D =
(QD,CD, ID,FD,∆D) be a DMCA with the same lan-
guage as M2. The completion of D is the following:
we add a new non-final state qsink and the transition
qsink−{>,>,>}→qsink. For every state q, let Pq = {ϕ |
q−{ϕ}→r ∈ ∆D}. Then, for every state q 6= qsink we add
a new transition q−{ψ}→qsink where ψ = ∧ϕ∈P¬ϕ . In-
tuitively, if no outgoing transition from q can be exe-
cuted, then we can use this new added one. For this
reason the procedure preserves the determinism. Also
the langauge of D is preserved because qsink is not
a final state. To finish to complementation of M2 it is
sufficient to complement the final condition FD of D
by simply putting ¬FD. We define the function com-
plement that takes an MCA and produces a DMCA as
described above.

Second, we build the product automaton N =M1×
M2 that recognizes the language L(M1)∩L(M2) sim-
ilarly as for NFAs. The states of N = (Q,C, I,F,∆)
are pairs (q,R), where q ∈ Q1 and R ∈ QD, i.e., Q ⊆
Q1×QD. The set of counters of N is C ⊆ C1 ∪CD

(some counter might not be needed if its corresponding
state is not reachable, see below the function ground).
The initial formula I of N labels pairs of states as initial
if both states are also initial in M1 and M2, respectively.
Formally, we transform I = I1∧ ID into disjunctive nor-
mal formal such that each part of disjuncts of the form
s = q∧s = R is replaced by s = (q,R). The initial
value of counters are then the combinations of initial
values of M1 and M2. This transformation is denoted
by dn f , so I = dn f (I1∧ ID). The final formula F of
N is computed analogously. The transition formula
∆ of N is computed as follows: let (q,R) be a reach-
able state (at the start all initial states are reachable).
We combine the outgoing transitions from q and R,
that is if ϕ = q−{ω}→q′ ∈ ∆1, ψ = R−{Ω}→R′ ∈ ∆D and
sym(ϕ)∧sym(ψ) is satisfiable, then we add a new tran-
sition (q,R)−{ω∧Ω}→(q′,R′) to ∆ and the pair (q′,R′) is
marked as reachable. After we process all combina-
tions of outgoing transitions, we pick other reachable
state, but each state is process at most once, thus the
algorithm terminates. We note that the generated states
might not be reachable in real (see Section 3.3), be-
cause we do not only combine the transitions ϕ ∈ ∆1
and ψ ∈ ∆D for which sym(ϕ)∧ sym(ψ) is unsatisfi-
able and completely ignore the guards on the counters,
which can cause that the transitions are unsatisfiable—
this is purpose of the next section.



The whole procedure of the product construction
is summarized in Algorithm 1, where the function
ground on Line 14 removes from C1∪¬CD all coun-
ters that do not appear in any guards of I and ∆ and the
function ground on Line 15 removes predicates from
dn f (F1∧¬FD) that contain states that are not in Q or
counters that are not in C.

Algorithm 1: Product of MCAs
Input :MCAs M1 = (Q1,C1, I1,F1,∆1),

M2 = (Q2,C2, I2,F2,∆2) with
Q1∩Q2 =C1∩C2 = /0

Output :An CA N = M1×M2 such that
L(N) = L(M1)∩L(M2)

1 (QD,CD, ID,¬FD,∆D)← complement(M2);
2 I← dn f (I1∧ ID); ∆← /0;
3 Q←{(q,R) | s= (q,R) appears in I};
4 W ← Q;
5 while W 6= /0 do
6 pick and remove (q,R) from W ;
7 foreach q−{ϕ}→q′ ∈ ∆1, R−{ψ}→R′ ∈ ∆D do
8 Let σ1 = sym(q−{ϕ}→q′);
9 Let σ2 = sym(R−{ψ}→R′);

10 if sat(σ1∧σ2) then
11 if (q′,R′) /∈ Q then
12 Q← Q∪{(q′,R′)};
13 W ←W ∪{(q′,R′)};
14 ∆← ∆∪{(q,R)−{ϕ∧ψ}→(q′,R′)};
15 C← ground(C1∪CD);
16 F ← ground(dn f (F1∧¬FD));
17 return (Q,C, I,F,∆);

3.3 Reachability of Final States
In principle, we apply breath-first search on the product
automaton M1×M2 where the starting points are the
initial states. If we encounter a final state, then we need
to check whether its final condition is reachable. If so,
we stop and know that L(M1)∩L(M2) 6= /0, otherwise
we continue in searching.

In detail, for every state q in M1 ×M2 the for-
mula βq denotes the possible values of counters if
q is reached. We start from the initial states where
the initial values of counters are given by the initial
condition. These initial states are pushed in the list
Worklist. For each state q that is not initial, we set βq

to ⊥. Until Worklist is empty, we take a state q from
Worklist. If q has self-loops, i.e., q−{α}→q∈ ∆ for some
α , then the possible values of counters represented by
βq can be changed by executing the self-loops (the
details are provided in Section 3.4, see function accel-
erate), thus suppose that βq is updated accordingly to

the self-loops of q. Then for all states r 6= q such that
q−{ϕ}→r ∈ ∆, we test whether βq ∧ϕ is satisfiable. If
so, then we compute new values of counters of the
states r. This is done by the projection βq ∧ ϕ of
the unprimed counters used in the formula, followed
by an application of the unprime function. The un-
prime function replaces every occurrence of a primed
counter c′ by its corresponding unprimed counter c.
Let ψ = unprime(pro jection(βq∧ϕ)). If JψK⊆ JβrK,
then we do not add the state q to Worklist because we
do not get any new information—if some transition
from r is unsatisfiable, then it will still be unsatisfiable
if βr is modified by the new values represented by ψ .
Otherwise βr := βr∨ψ and we push r in Worklist. To
test whether a state q is final, we test whether βq∧F
is satisfiable.

We note that some states q can appear in Worklist
more than once. But always the semantics of the for-
mula βq got larger if the state appears again in the
Worklist. Since the number of possible configurations
of the product automaton, i.e., the number of possible
values of counters, is finite (due to bounded counters),
the state q cannot be added to Worklist infinite number
of times. Therefore, the algorithm always terminates.

3.4 Acceleration of Self-loops
We have built the product automaton N = M1×M2 in
Section 3.2. We also provide the test of reachability of
states in the product automaton in Section 3.3. How-
ever, we do not say how the formula βq is updated if
a state q has a self-loop, which we fix in this section.

Let (q,R) be a state of N. The state (q,R) has
a self-loop in N if and only if q has a self-loop in M1
and R has a self-loop in M2. Since M1 is an MCA,
we know that each state of M1 has at most one self-
loop by the definition. This is not true in general in
the DMCA M2. It follows that the state (q,R) in the
product automaton can have more than one self-loop.

The trivial solution to update βq is that we do not
distinguish between the self-loops and the outgoing
transitions of the state q in Section 3.3. If such a so-
lution is used, then the algorithm for the inclusion
problem for eREs runs as slowly as the methods based
on NFAs. First, we give a small example showing why

qc′ = 0 r

c < n,c′ = c+1

c = n

Figure 2. Example of an MCA M with n ∈ N where q
is an exact counting state. The language of M consists
of all strings of length n.



Table 1. Possible forms of the self-loops on state q in a DMCA.

Name Form of the label of a self-loop in DMCAs
(I) cq[0]< maxq∧ cq[0]′ = 0
(II) cq[Ψ(q)−1] 6= maxq∧

∧Ψ(q)−1
i=0 cq[i]′ = cq[i]+1

(III) cq[Ψ(q)−1] = maxq∧ cq[0]′ = 0∧
∧Ψ(q)−2

i=0 cq[i+1]′ = cq[i]+1

this solution is strongly inefficient, and then we present
an idea of how the self-loops can be accelerated.

Suppose that we have an MCA M1 as in Figure 2
and assume that M2 is a one-state MCA such that
L(M2) = Σ∗. Then the product automaton M1×M2
has the same structure as the MCA M1. We simu-
late the procedure from Section 3.3 with the trivial
solution for updating βq. The initial formula gives
βq = (c = 0). Next, we check whether the self-loop
or the exit transition of q can be executed, in this
case only the self-loop on q can be executed. Note
that unprime(pro jection(βq ∧ c < n∧ c′ = c+ 1)) is
equal to c = 1. Because Jc = 1K 6⊆ Jc = 0K, we set
βq = (c = 0∨ c = 1). And q is pushed to Worklist.
We continue in a similar manner and after n steps we
obtain βq = (c = 0∨·· ·∨ c = n). The next step n+1
produces the formula unprime(pro jection(βq ∧ c <
n∧ c′ = c+1)) whose semantics is already included
in JβqK, thus we stop executing this self-loop.

From this simple example, we see that the algo-
rithm based on the trivial solution spends the most time
in updating βq of states q with self-loops (in practice n
can be large). In the example above, we can use the ad-
vantage of that the product automaton is an MCA. We
use the following facts: (1) if we enter a counting state
q, then cq is set to zero; (2) if q is a counting state, then
there is only one possible self-loop, called incremental,
which have a fixed form. In our example, the self-loop
can be accelerated by replacing the guard and update
of the self-loop by ∃k : (0≤ k≤ n∧c′= c+k∧c′≤ n).
Such a formula is called an acceleration of the self-
loop. By using the same methods as above, we can
obtain the same result after one iteration instead of n.
In general, for any counting state p, the self-loop of p
can be replaced by the acceleration formula ∃k : (0≤
k ≤maxq∧ c′q = cq + k∧ c′q ≤maxq).

Now, suppose that M1 is a one-state such that
L(M1) = Σ∗.1 Then the product automaton M1×M2
is a DMCA. As we said, the structure of DMCAs is
still somewhat restricted, but more complicated than
the structure of MCAs. There are two main differ-
ences: (1) each state can have several self-loops; (2)
the counter guards and updates of a transition consists

1Our algorithm can be also used for the universality problem
of eRE. That is, we check whether Σ∗ ⊆ L(M2).

of several different variants of counters. Exactly as
for MCAs, the key for acceleration of the self-loops in
DMCAs is to find the forms of the self-loops in DM-
CAs. Suppose that the DMCA is the determinization
of the MCA, which using only one counter. Then from
the determinization algorithm [1, Section 4.2] follows
that there are three different forms of self-loops (see
Table 1).

We assume that maxq > 0, otherwise the state is
not counting. Thus the self-loops of the form (I) do not
have to be accelerated, i.e., the acceleration formula
looks the same as the form. The self-loops of the form
(II) have a similar form as incremental self-loops in
MCAs, except that we need to update more variants
of counters. Since the highest variant of cq has the
highest value, the acceleration formula is ∃k :

(
0 ≤

k ≤maxq∧
∧Ψ(q)−1

i=0 cq[i]′ = cq[i]+ k∧ cq[i]′ ≤maxq
)
.

The self-loops of the form (III) do not have to be ac-
celerated if Ψ(q)− 1 = maxq. Otherwise we must
have Ψ(q)< maxq. In this case there is some largest
number k < Ψ(q)− 1 such that cq[k]+ 1 < cq[k+ 1],
or, equivalently. cq[Ψ(q)− 1− k] + k 6= maxq. If
there is no such k, then cq[0] > 0. It follows that af-
ter Ψ(q)− k iterations the self-loops do not add any
new information. Thus the acceleration formula must
need find to such a number k. So the acceleration for-
mula is ∃k :

(
0 ≤ k ≤ maxq∧ cq[Ψ(q)− 1− k]+ k =

maxq∧
∧k

i=0 cq[i]′ = i∧
∧Ψ(q)−2

i=k+1 cq[i]′ = cq[i− k]+ k
)
.

Suppose that we have a general product automa-
ton. From the preceding paragraphs, we know how to
accelerate a self-loop with counter variants of a single
counter. But what would happen if the self-loop has
counter variants of different counters? The counter
guards and updates of the self-loops can be divided
into ϕ = α1∧·· ·∧αn such that αi contains only vari-
ants of single counter ci. Each of the individual αi is of
the form (I)–(III), or incremental self-loop. For each
of the forms we know its corresponding acceleration
formula ψi, but the acceleration of ϕ is not equal to the
conjunction of its corresponding acceleration formulae
ϕi. We need to ensure that the k in each part of the
counter update is the same. Replace the variable k in
the counter guard of ψ by ki. Now the acceleration
formula of ϕ is equal to the conjunction of

∧n
i=0 ψi and

k1 = k2 = · · ·= kn, which ensures that the counters are



incremented by the same value.
The state q in the product automaton can have

more than one self-loop. In this case we proceed as
follows. Let ϕ1, . . . ,ϕn be self-loops of q in an arbi-
trary, but fixed, order. For each self-loop ϕi we know
the acceleration formula ψi. Thus we also know how
βq is updated. If JψiK ⊆ JβqK, then βq is not updated.
The function accelerate works as follows: we update
βq by processing the self-loops ϕ1, . . . ,ϕn repeatedly
until last n acceleration formulae do not update βq.

Finally, we note that it is not necessary to build
the whole product automaton and after that search for
a reachable final state (with a reachable final condition).
In practice, we can build the product automaton on the
fly and if we encounter a reachable final state (with
a reachable final condition), then we can stop. In this
step, we have L(M1)∩L(M2) 6= /0, or equivalently
L(M1) 6⊆ L(M2). Eventually, we stop if we build the
whole product automaton.

4. Advantage of our algorithm over the
methods based on NFAs

In this section, we give a comparison between our
algorithm, which is introduced in Section 3, and the
methods based on NFAs. We define the size of the
automaton (classical or counting), written |N|, as the
number of its states.

We have given eREs r1 and r2. Both approaches
build the product automaton N1×N2 where N1,N2 are
NFAs or MCAs such that L(r1) =L(N1) and L(r2) =
L(N2). In the following, Ni denotes an NFA and Mi

denotes an MCA for i ∈ {1,2}.
The size of the product automata is O(|N1| · |N2|)

and O(|M1| · |M2|), respectively. Suppose that r1 is
a fixed eRE except that the bounds of the counting
operator are parameters. If the bounds are increased,
the size of M1 does not change in contrast to the size of
N1 where the size grows linearly. Although O(|N1|) =
O(|M1|), for any value of the bounds in the counting
operators we have |M1| ≤ |N1|. The hidden constant
in O may be large. Suppose that in r1 the counting
operator occurs k > 0 times and the smallest value of
all lower bounds of the counting operators is ` > 1.
Because the size of N1 grows linearly we know that
|M1| · k`≤ |N1|.

From [1] we know that the complemenation of
MCAs may not have be always smaller than th unfold-
ing MCAs to NFAs and complementing NFAs. But in
many cases we have |M2| ≤ |N2| (cf. [1]). Therefore in
many cases we have |M1| · |M2| · k`≤ |N1| · |N2|. Thus
the advantage of our approach is that we work with
smaller automata. An open question is whether the

reachability test will be efficient enough so that we
outperform the methods based on NFAs.

At least one example was given in the introduction.
Recall, let r1 = .*a.{k},r2 = .*a.{k-1,k+1} for
k ≥ 1. N1 representing r1 has k + 1 states, M1 has
always two states regardless of the values of k (see
Figure 1). N2 representing r2 has k+2 states, the com-
plement of N2 has 2k+2 +1 states, M2 has always two
states, the complement of M2 has (k+ 2)+ 1 states.
Note that we need to count the sink state of the com-
plements. From the example we see that even for rel-
atively small values of k the methods based on NFAs
fail.

5. Conclusions
In this paper, we presented the algorithm for the inclu-
sion problem of extended regular expressions (eREs).
The algorithm is based on the transformation of eREs
into monadic counting automata (MCAs). The MCAs
are compact representations of eREs because the num-
ber of states in MCAs does not depend on the bounds
in the counting operator. Thus the product of MCAs
is often significantly smaller than if eREs are trans-
formed into nondeterministic finite automata (NFAs).

We have shown that we can solve inclusion prob-
lem for new sets of eREs if the eREs are transformed
into MCAs instead of NFAs, because the solution
working with NFAs fail due to exponential blow up
in the number of states. Moreover, we note that the
advantage of our algorithm grows if the bounds and
occurrences of the counting get larger.

Although the eREs are common in practice, there
are still some regular expressions that do not satisfy
our abstract syntax of eREs. The possible extension is
to avoid the restriction that counting operator is limited
to character classes, e.g., (abc){5,10} denoting all
strings where abc appears 5–10 times.
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