
http://excel.fit.vutbr.cz

Karel 3D – Application for Teaching of
Programming
Vojtěch Čoupek

Abstract
The paper discusses the problem of teaching the basics of programming to the upper primary
school and secondary school students. Firstly, it introduces Karel programming language, which is
a tool that has been used since 1981, and some of its most important versions. Afterwards, the
current trends employed in teaching the basic understanding of programming languages like block
programming will be mentioned. Then, it presents a number environments used for this purposes
and discusses their strong and weak points. The main goal is to create a new modern environment
based on Karel programming language with up to date features that allow to teach programming in
a playful and entertaining way.

Keywords: Teaching of programming – pedagogical programming language – block programming
– web application – syntax checking – 3D graphics – JavaScript – Karel language – primary school
– secondary school – beginners in programming

Supplementary Material: Aplication website — GitHub repository — Demonstration video

xcoupe01@stud.fit.vutbr.cz, Faculty of Information Technology, Brno University of Technology

1. Introduction

In the world where almost everything is driven by com-
puters, we need people who can understand them,
manage them and create programs that make these
computers useful. These people begin as students;
therefore, they need to start with something simple.
We cannot expect anyone who has not got any ex-
perience in the field of programming to understand
modern powerful programming languages like C++ or
JavaScript. The complexity unnecessary for the begin-
ners, the inability to visualize their actions and the lan-
guage barrier makes them really unsuitable for teach-
ing the basics of programming.

That is why there are several specialized languages
that can check these boxes. One of them is Karel pro-
gramming language, which was designed by professor

Richard E. Pattis and published in a book in 1981
(see [1]). This language allows one to control a robot
in a closed environment. This environment is a two
dimensional grid consisting of right to left streets and
top to down avenues. The robot can move in this
environment, ask simple questions and place beep-
ers if it has any in its backpack. Robot’s actions are
programmed via the textual representation of Karel
language. There are several projects based on this idea,
such as a Czech translation for the robot in 2D room
by Oldřich Jedlička [2].

One of the most important versions of environ-
ments that use the same idea as professor Pattis de-
scribed was the project of Andrej Blaho and his team.
They developed Karel in 3D for the operating system
MS-DOS (visualized in the teaser images – first from

http://excel.fit.vutbr.cz
http://smallm.cz/karel2/karel.html
https://github.com/xcoupe01/project_Karel
https://youtu.be/A9ywCI-nMKA
mailto:xcoupe01@stud.fit.vutbr.cz

left). This project exerted a great influence on the au-
thor because this Karel was used to teach him the ba-
sics of programming. More about it can be learned
from the Czech site created by Karel Klı́ma [3]. But
due to its implementation for the MS-DOS operation
system, it has its limitations on modern machines and
often leads to poor workability. It is not user friendly,
for example has no mouse support, which is really im-
portant for those beginners. Yet, it is still used in some
schools in the Czech Republic because it offers great
possibilities to demonstrate and teach basic code struc-
tures and programming logic. Karel will be thoroughly
analyzed in Section 2.

Apart from Karel there are, of course, other solu-
tions. As you already know, Karel is a relatively old
idea and many new great projects have appeared since
the 1980s. One of the most popular environments is
Scratch[4]. Scratch is a free to use multi-platform
tool developed by the MIT media lab which teaches
programming through creating one’s own animated
2D characters, or even through creating their own sim-
ple 2D game. Unlike Karel, Scratch does not use
the text representation. Instead of the text, Scratch uses
a modern block-based representation, which is really
convenient for the users, because it enables the syn-
tax control by the blocks in the process of program
creation. Also the syntax is visualized by the blocks
connection so the user understands which blocks can
be connected, as well as the meaning of the connec-
tion. The blocks are also color-coded so that similar
functions represented by the blocks have a similar
color. This approach to defining the code is really
popular nowadays in languages for beginners and a lot
of environments are based on it.

The goal of this project is to create a new modern
version of the environment for Karel language and
make it more accessible for users. Apart from pre-
serving the original function and options, it enhances
its capabilities and supplements it with modern ele-
ments that are widely used and popular. Therefore,
I designed and developed a web-based application,
which can be run and used on many different devices
including PCs, laptops and tablets. In its current con-
dition, it is a replica of Andrej Blaho’s team version
for MS-DOS but extended by the block programming,
truly 3D graphics, variables support and a professional
text code editor. My application mentioned above
contains both approaches to defining the code and
the users can choose which one they prefer. A mul-
tilingual support is in progress. Currently, there is
the Czech and English version in both block-based and
source-code-based representation.

Figure 1. Example of a code defined with blocks

2. About robot Karel
This section will discuss the possibilities of Karel lan-
guage and its limitations. Later in Section 3.4, an ex-
ample of Karel programming language will be demon-
strated in the new environment. The following struc-
tures are applicable in the application proposed by this
paper. As mentioned before, Karel is a robot that can
interact with a closed environment. It is important to
note that the robot’s face determines the block in front
of it, which is essential for the robot’s interaction.

2.1 Commands
Commands make it possible for the robot to interact
with its surroundings. Robot is placed in a square
shaped room created from blocks similar to a chess
board. Karel can be only on one of these blocks
in the room and the robot cannot escape the room.
If the block in front of it is missing, it is defined that
there is a wall.

Firstly, it can turn using commands right and
left. Karel can move forward with the command
forward if there is a space in front of it. The robot is
able to move only to the blocks inside the room, climb
one brick at a time and it does not mind falls. Karel
can place bricks in front of it, but the bricks must be
laid on a ground block or another brick. Karel cannot
place and pick a brick more than one brick below its
position and more than ten bricks above its position.
As mentioned before, the robot can step on the bricks
and use them to move vertically in the room.

In addition to bricks, the robot can place a mark
on the block where it stands. The mark is always
on the top of the block, even if Karel is adding bricks
to the same block. Karel can mark its current loca-
tion by the command mark and remove the mark

by unmark.
Lastly, the user can alter the speed in which Karel

executes the commands by using keywords faster
and slower. The robot can also make a beep sound
by using the command beep.

2.2 Conditions
Apart from interacting with the room, Karel can also
sense what is around. In the code, we use conditions
which can, at any given time and position, answer
simple yes or no questions. There are four basic condi-
tions:

wall – says true if there is a wall in front of Karel.
brick – says true if there are one or more bricks

on the block in front of Karel.
mark – says true if there is a mark on the same block

as is Karel’s current location.
vacant – says true if Karel can make a step forward

on the block in front of it.

These conditions can be used in branching and
looping control structures, described in Subsection
2.3.

2.3 Cycles and Decision Making Structures
Block-structured programming is based on decision
making structures and jumps, so Karel also provides
some basic ones. To close a code in these structures,
most programming languages use brackets, but Karel
language uses an asterisk and a type of the cycle to
close as shown in the following examples. In the block
of a code that is nested by this cycle, users are free to
use other cycles and commands.

The simplest one is do cycle, which repeats the nes-
ted code a given number of times. The structure looks
like this:

do [number] times
[block of code]

*do

A slightly more advanced structure is while cy-
cle, which repeats its nested code until the given con-
dition is true.

while is/not [condition]
[block of code]

*while

The last one is the decision making if structure. It
takes the condition and executes its nested commands
if the condition is true. There is an optional else
branch, which will be executed if the condition is false.
So this structure can be one of following:

if is/not [condition]
then

[block of code]

*if

or with the else branch

if is/not [condition]
then

[block of code]
else

[block of code]

*if

In the last example, there is a line starting with
#. Users can employ this to create comments of their
code and the interpreter will ignore these lines. They
will turn green to indicate that this part of a code is the
command.

2.4 User-Defined Commands as Conditions
Karel language allows users to create their own com-
mands and conditions. In fact, it is required to make
some part of a code executable. The difference be-
tween a command and condition is that the condition
can output true or false value while the command can-
not output anything. The commands can be created
by the following structure:

command [identifier]
[block of code]

end

If the user wants to create a custom condition, he
or she will use this structure:

condition [identifier]
[block of code]

end

The identifier must be unique among all other user
defined commands and conditions and cannot be one
of the language key words. After the command or
condition is defined, it is possible to use them as com-
mands or conditions in other parts of the code. Karel
also supports recursions, so you can find the center of
the wall by the following example:

command find_center_wall
forward forward
if is wall
then

left left
else

find_center_wall

*if
forward

end

If the condition is created, it requires special com-
mands true and false to define the outcome of
the condition but they do not end the execution of the

condition execution block. It is recommended that
the robot ends in the same location and the room is
the same as it was at the beginning of the execution
of the condition. Those conditions can then be used
in the while and if structures.

2.5 Expressions and Variables
Expressions and variables are not accessible in the orig-
inal language; they are implemented in the revised
environment. The integrated expressions support oper-
ations with positive integer numbers listed below:

+ – addition
- – subtraction
* – multiplication
/ – integer division
% – modulo
() – brackets

There are also comparison operators which return
one if they are true or zero if not. These operators
contain:

> – greater than
>= – greater than or equal
< – less than
<= – less than or equal
== – equal to
!= – not equal to

Expressions can be used to define the number
of repetitions in do cycle or to replace conditions
in structures if and while. When replacing the con-
dition, the expression is considered as true if the out-
come is not zero and false if the outcome is zero.

Also the variable support is added so that the user
can use variables instead of numbers in the expressions.
It is possible to create variables with the global or local
scope. As expected, the global variables are accessible
anywhere from the code and can be used to pass values
between commands and conditions, whereas local vari-
ables can be used only in the command or condition
where they are defined.

To define the global variable, a user must employ
the following syntax outside any command or condi-
tion declaration:

global [variable name] = [expression]

Defining a variable with the same name as any
command or condition will cause error. When defined,
the variable value can be set in any command or condi-
tion with the same syntax or used in other expressions.

Similarly, the local variables can be defined by
the following syntax in any command or condition:

local [variable name] = [expression]

Defining the local variable with the same name as
any command, condition or global variable is not al-
lowed. There can be an optional keyword variable
after the keywords global or local.

3. The New Version
This section will give the reader a slightly deeper in-
sight into the technical aspects of the new version,
name some valuable libraries used by the application,
talk briefly about the user interface and, in the end,
show some simple example exercise in the new Karel.

The project was designed for the web environ-
ment, so any user on any device could run Karel.
The main programming language employed in this
project is JavaScript for the functional parts combined
with markup language HTML and style sheet language
CSS that define the user interface.

3.1 Syntax Checking and Interpretation
The main thing that the application needs to do is to
check and interpret the user-defined code. Instead of
checking purely the given code, it is firstly split into
tokens, which are stored and make up the internal
representation of the defined code. After that step, it is
ready to be checked.

For that purpose, the textual representation uses
predictive parsing based on LL1 method, which checks
the code by trying to generate the user code with
the given rules that Karel language must follow. More
details about this method can be found in Czech pa-
per by Miroslav Novotný [5]. For that, the internal
token representation is used, and the tokens are further
processed and saved into internal lists. If any mis-
understandings or errors are found, they are stored,
and, at the end of syntax checking, shown as a tooltip
in the editor.

If no error is detected, the application can proceed
to the interpretation. The interpreter takes the newly
created internal representation and, using those tokens,
iterates the array through the defined code. The cursor
in the text editor is moving with the interpreter so
the user can tell what part of the code is currently
being processed.

3.2 Used Libraries
To make this all happen, some libraries were used
to tackle certain problems regarding the visualization
of the room with the robot and the ways in which
the user can enter the code. Here are the tools which
are employed by the application:

Figure 2. User interface of the new version of Karel

Three.js – The main graphical library of the project.
It takes care of visualizing the room, loading
objects into the room, lighting it, ect.

ACE – As the user writes the code, this text code
editor handles the code highlighting and other
needed functions. It is one of the most popular
code editor libraries used in many known apps
(for example Overleaf).

Blockly – The block code editor allows the user to de-
fine a code by blocks. This library is frequently
used by the beginner programming languages
like Scratch.

Split.js – It can make the user interface modular by al-
lowing resizable multiple windows (or in HTML
divs).

jQuery – It is a very popular JavaScript library with
its extension jQuery UI employed in this pro-
gram to realize popup dialogs.

3.3 User Interface
This section will briefly discuss the current user inter-
face visualized in Figure 2. From the left to right there
are the following parts:

Room visualization – users can see the room and
the robot here, the camera of the visualization
can be controlled via mouse. If the users activate
this room by clicking on it (the room focus indi-
cator goes red), then they can control the robot
directly with the keyboard using the following
keys:

• W – step forward.
• A – turn left.
• D – turn right.
• P – place one brick in front of the robot.

• Z – pick up one brick in front of the robot.
• O – mark the unmarked position below

the robot or unmark the marked position
below the robot.

• I – remove a block in front of the robot
from the room or bring back the removed
block.

Blockly editor – users can create their own programs
using the block representation. In the tool bar
on the right, there are categories in which they
can find blocks they might need. If they nest
some commands in one of the blocks from Base
category, the run button is available, which can
start the execution of the nested code.

Text code editor – users can create programs using
the text code representation. If toggled, it can
also visualize the current code defined by the blo-
ckly editor in the read only mode. The code is
color highlighted and if any error is found during
the checking, it is displayed here by underlining
the word and error message in the left gutter.

All these parts of the application are resizable, so
the users can grab and drag the splitters to hide some
unwanted editors or to adjust the environment as they
wish.

On the top, there is the main application bar, which
contains, from left to right:

Main menu – from this menu, the users can access
functions like changing the room size, saving
and loading application states, ect.

Languages – selects the language of the application.
Run – executes the code selected in the text editor.
Debug – runs the selected code in the debug mode.

https://threejs.org/
https://ace.c9.io/
https://developers.google.com/blockly
https://split.js.org/
https://jqueryui.com/

Figure 3. Karel in the maze, the task is to get to
the green marked block.

Figure 4. The maze solving code written in a text and
block representation

Stop – stops any currently executing function.

Finally, below the room visualization, there is
a quick action menu, which also shows the current
state of the application, such as variable values and
output terminal. The user can control the environment
behavior, e.g. interpretation speed, from here.

3.4 What Karel Can Do
In this section, a simple example exercises will be
shown. The first task is to get the robot from its current
position to a marked position in the maze visualized
in Figure 3.

To solve this problem, it is necessary to create our
own command, which can be named solve maze.
We need to stop this command if there is a mark on
Karel´s current position, which can be accomplished
by using while cycle with the condition not mark
to run its nested command when the robot in not stand-
ing on the mark.

One of the algorithms that can solve the maze is
that the person in the maze places his/her left or right
hand on the wall and goes forward by always touching
the wall with his/her hand. Karel can do the same.
In the following example, the right hand will be cho-
sen. This can be done by turning the robot right, then
turning left, until there is a wall in front of it, and then
going forward. When the robot arrives at the desired
marked position, it will beep to let the user know that
the robot has finished its task. The code can look
like the one seen in Figure 4 and it is demonstrated
in the demonstration video. The reader can see the

Figure 5. The text and block representation of the
code, which can find the middle of the room

example solution in the application here.
The second example utilizes the variable extension

of Karel language. The task is to move the robot from
the initial position in the corner closest to the camera to
the center of the room. To make this exercise possible,
it is necessary to have a room with the odd number
of blocks in both dimensions. The given solution will
also work for rooms with the even number of blocks,
but the robot will end on one of the four blocks around
the center of the room. In the example, there is a room
with nine by nine dimensions. The solution using
recursion was already presented in Figure 1, but now
another approach with variables will be shown.

A simple algorithm to solve this problem is to
move across the room and count every step till there
is no wall in front of Karel. Then the robot turns
around, divides the counted steps by two and makes
the calculated number of steps. Afterwards, the pro-
gram turns the robot to the left and repeats the first
part of the algorithm. Now the robot is in the middle
of the room. The reader can see the example solution
in Figure 5 or try it in the application here.

If the user clicks on the middle button in the top
main bar, he or she will be taken to the main page
of the information system built around the application.
In the current implementation, only the Czech version
of the system is available. This page includes some
information about the project and controls, but mainly
there are other exercises to solve and check following
the proposed solutions. If needed, they can be loaded
in Czech and then translated into English by switching
the language in the application. The exercises are
arranged from the easiest to the harder ones, but the list
is not complete and more exercises are to be added.

There is one more function provided by the infor-
mation system – the users can create their own account.
When logged in, users can save the state of the applica-
tion to the cloud or load any saved state from the cloud.
These options are added to the main menu in the appli-
cation. Login is accessible only from the information
system main page on the top right corner.

https://youtu.be/A9ywCI-nMKA
http://smallm.cz/karel2/karel.html?Bludiste
http://smallm.cz/karel2/karel.html?StredMistnosi

4. Conclusions
To sum up the project, I think that the new Karel can
be a useful tool for teaching the beginner students
the basics of programming. It is based on a solid foun-
dation laid by many successful students and teachers.
The new version employs many modern technologies
that the students can encounter later in their instruction
and which make the study easier and more enjoyable,
such as block programming or syntax highlighting.

The further development will involve the creation
of more exercises for users and polishing and improv-
ing the information system. I hope that it will facilitate
the education of many successful and talented pro-
grammers.

Acknowledgements
I would like to thank my supervisor, Ing. Zbyněk
Křivka, Ph.D., for his help and advice during the devel-
opment of the project. Also I would like to thank my
secondary school teacher, Mgr. Roman Ondrůšek, and
my father, Mgr. Petr Čoupek, who taught me how to
program, introduced me to Karel language and made
the first ever prototype with me.

References
[1] Richard E. Pattis. Karel The Robot: A Gentle

Introduction to the Art of Programming. Wiley, 2
edition, 1995.

[2] Oldřich Jedlička. Robot Karel: vývojové
prostředı́. online, 2006. http://karel.
oldium.net/.

[3] Karel Klı́ma. Karel. online, 2007. http://
karel.webz.cz/.

[4] Mitchel Resnick. Scratch. online, 2005. https:
//scratch.mit.edu.

[5] Ing. Miroslav Novotný. Syntaktická analýza
založená na stavových gramatikách. online,
2015. https://www.vutbr.cz/www_
base/zav_prace_soubor_verejne.
php?file_id=115409.

http://karel.oldium.net/
http://karel.oldium.net/
http://karel.webz.cz/
http://karel.webz.cz/
https://scratch.mit.edu
https://scratch.mit.edu
https://www.vutbr.cz/www_base/zav_prace_soubor_verejne.php?file_id=115409
https://www.vutbr.cz/www_base/zav_prace_soubor_verejne.php?file_id=115409
https://www.vutbr.cz/www_base/zav_prace_soubor_verejne.php?file_id=115409

	Introduction
	About robot Karel
	The New Version
	Conclusions
	References

