
http://excel.fit.vutbr.cz

Holographic Injection - Let There Be True 3D
Bc. Roman Dobiáš*

+ = =

HoloInjector OpenGL Application Quilt Native image for 3D display

Abstract
The adaptation of upcoming autostereoscopic displays by regular users depends on availability of
supported applications. To increase such set, this paper describes compatibility software which
turns (semi-) automatically the output of generic OpenGL 3D application to display-native output,
while taking advantage of true 3D display capabilities. This is achieved using a conversion layer
that intercepts parts of OpenGL API and translates such API calls to others to produce multiview
output of the original application.

Keywords: OpenGL, autostereoscopic displays, single to multiview conversion, automated conver-
sion, pipeline injection, API call hooking

Supplementary Material: Downloadable Code, Examples of conversion
*xdobia11@stud.fit.vutbr.cz, Faculty of Information Technology, Brno University of Technology

1. Introduction
There are tons of legacy applications in the real world
that would be interesting to display using autostereo-
scopic displays (shown in Figure 1) while taking advan-
tage of their depth perception capabilities. However,
the conversion of applications usually requires signifi-
cant amount of additional work for developers to adapt
the rendering part of engine. In addition, the develop-
ment of many applications has already deceased, or
the source code could be lost.

This paper attempts to solve this by introducing
an application-agnostic compatibility layer, placed be-
tween the application and underlying OpenGL driver.
It transforms OpenGL API calls to different API calls
transparently so that the output of the original appli-
cation is turned to the display-native image format of
desired autostereoscopic display in run-time, as shown
in Figure 2. The implemented software is limited to

OpenGL applications, but DirectX could be supported
analogously.

Figure 1. Consumer-affordable autostereoscopic
display, produced by Looking Glass Factory Inc. 1

In theory, such the layer could convert any OpenGL
application, but in practice, this is unfeasible due to
large and complex state space of OpenGL API calls
and their respective valid applications. Moreover, some

http://excel.fit.vutbr.cz
https://github.com/Romop5/holoinjector
https://github.com/Romop5/holoinjector-tests
mailto:xdobia11@stud.fit.vutbr.cz

of the effects used in rendering may not be repro-
duced without additional knowledge due to ambigui-
ties. Therefore, the practical output of this paper is a
tool which helps to semi-automatically convert a sub-
set of applications with minimum guidance by user.

App

O
P

E
N

G
L

GPU

OS

Draw calls
display

H
O

LO
 IN

JE
C

T
O

R

Figure 2. Resulting conversion layer, placed in
operating system. Draw calls to OpenGL API are
intercepted and duplicated transparently, resulting in
multi-view output of the original application.

Up to my knowledge, existing solutions are limited
to conversion of single- to stereoscopic-view displays
such as Head-Mounted Displays for Virtual Reality, or
synthesize multiview from stereo view.

The paper’s contribution is in describing the pro-
cess of extending single-view 3D applications to auto-
stereoscopic-ready formats, in providing an implemen-
tation of solution working for a subset of all possible
existing OpenGL applications, and in showing that it
is possible to partially handle this task automatically.

2. Background
Before describing the solution, a prerequisite knowl-
edge of displaying using autostereoscopic displays is
briefly described.

2.1 Autostereoscopic displays
In contrast to Stereoscopic Displays, which provides
two distinctive views of scenes, such as anaglyphs or
Head-Mounted Displays, Autostereoscopic Displays
do not require user to wear or use any additional gad-
gets.

The most prominent ones are Light-field Displays.
These provide different image, depending on angle
under which the display is perceived [1, p. 16] with
limited angular density (unique views n, typically n =
45). In the remaining text, we assume unique views
only in horizontal plane of the display.

They are typically made of a single LCD screen
with an additional element in front, parallax genera-
tor, which effectively blocks the visibility of pixels
belonging to other views under a certain angle. In
production displays, an array of micro-lenses called
lenticular lens are used. As lens is typically spread
in a diagonal direction to better use the resolution of
underlying screen, such lens is referred as slanted lens.

Alternatively, volumetric or holographic displays
are also referred as autostereoscopic, but they operate
over different representations of a scene.

2.2 Image structure of display’s native format
The physical layout of pixels belonging into logical
views is referred as so-called native format of 3D dis-
play, and it depends on physical measurements of dis-
play such as angle of slanted lens, size of lens, etc.

To provide a universal interface between views of
scene and displayed bitmaps, so-called quilt [2] image
format is introduced, represented by a grid of views.
Each cell is a view with well-defined camera trans-
formation, going from the leftmost view (bottom-left
cell) to the rightmost view (top-right cell). The quilt is
then transformed with display-specific parameters into
the resulting display-native image, which is shown on
the embedded screen of the display. An example of
quilt and its corresponding native image is shown in
Figure 3.

Figure 3. An example of quilt - a 3x3 grid of views,
manually taken from game The Witcher (top), and the
result of transformation to native format (bottom).

a In the subsequent text, a view refers to a cell of
quilt if not mentioned otherwise.

2.3 Preparing content for autostereoscopic dis-
plays

A typical autostereoscopic application thus renders
the scene from different perspectives in each frame,
and either feeds the quilt to display-specific SDK (for

instance, HoloSDK [3]) or outputs the native image
directly.

2D applications can be converted by rendering the
same view to all cells of quilt.

To make use of 3D perception with traditional
applications, applications have to be reprogrammed so
that the scene is rendered from different views close to
the original one, which may be resource-demanding.

This paper attempts to provide an alternative so-
lution for the aforementioned porting cases by intro-
ducing a conversion layer which translates rendering
commands to multiview rendering without changing
the code of original application.

2.4 Existing methods & applications
To my best knowledge, there is neither academic nor
open source solution for automated or semi-automated
conversion of real-time 3D applications to autostereo-
scopic displays. The closest type of similar existing
application is a conversion of generic 3D application
to binocular headsets, used by VR. In that field, numer-
ous commercial and open-source applications exist.

In general, there are two approaches for single
to stereo conversion. The most generic approach is
based on estimating stereo output approximately by
post-processing the application’s output RGBD image.
This is typically done by using methods derived from
steep parallax mapping, in which depth buffer stands
for local surface of geometry. Besides, these methods
must tackle solving holes, stemming from depth buffer
discontinuity, and may require user-defined bitmap
masks of pixels defining HUD. Such method is im-
plemented in Depth3D [4], an extension of ReShade
framework, or in commercially-available vorpX [5].
This approach satisfies needs of VR, assuming a short
baseline between user’s eyes, but would cause mas-
sive visual artifacts when pushing disparity to longer
distances, due to missing information. Whereas typ-
ical human has 50-60mm long baseline [6] between
eyes, users of autostereoscopic display may watch the
display from distance comparable to LCD displays,
resulting in large horizontal baseline. An example of
such visual artifact is visible in Figure 4.

Secondly, software such as vorpX also tries to in-
ject rendering pipeline and directly renders the appli-
cation’s content twice with different transformations.
However, none of existing commercial software re-
veals any formal description of this process. Also,
many solutions provide lists of supported applications2

suggesting that the underlying method does not work
transparently, but instead requires application-specific

2https://www.vorpx.com/supported-games/

tweaks or patches.

Figure 4. Visible visual artifact along edges in output
of vorpX, when used for VR, suggesting use of steep
parallax mapping for view duplication.

Alternatively, numerous methods exist in field of
conversion from stereo to multiview conversion [7]
by estimating depth map of from two views using
disparity and subsequent reprojection or warping of
input images.

The state-of-the-art method [8] can successfully
reconstruct novel views and extrapolate input views
to provide fill the whole quilt. However, any recon-
struction method will always be limited by amount of
information, provided in two input views, and there-
fore, in case of obstruction of the scene by a close
object, the resulting views may lack the geometry be-
hind the obstructor. While this may be sufficient for
film industry, in general, interactive applications try to
minimize artifacts as these might be explored by user
purposely, resulting to the break of the illusion.

In conclusion, the proposed conversion layer can
provide ground truth views into the scene even for ob-
structed scenes, which could be the potential advantage
over reconstruction methods.

3. Proposed solution

In general, graphical applications communicate with
underlying hardware in terms of geometry calls, which
upload representation of 3D model to graphic card,
and draw calls, which command the card to render the
models using specific parameters.

The ultimate goal of conversion layer is to intercept
and duplicate the draw calls with altered transforma-
tion so that meshes would be drawn multiple times
into multiple views, as shown in Figure 5.

The goal is achieved using following steps:

1. Shader injection During link time, each shader
program, used for rendering, is adapted such that
the transformation pipeline would allow to ren-
der different views of quilt, based on parameters

https://www.vorpx.com/supported-games/

in uniforms. This includes extraction of projec-
tion matrix out of ModelViewProjection(referred
as MVP latter) matrix, and reprojection after al-
tered transformation.

2. Uniforms tracking Uniforms are tracked to ob-
tain current MVP matrix when it is passed to
GPU using uniform API calls. Intercepted ma-
trix is subsequently decomposed.

3. Draw call duplication Each draw call is inter-
cepted and dispatched multiple times, each for
corresponding view. The correct view is ob-
tained using extracted projection parameters to
revert clip-space output of Vertex Shader (re-
ferred as VS) to camera-space, shift the position,
and reapply estimated projection.

4. Post-processing At the end of each frame, the
obtained quilt is post-processed to the native
image.

Draw call

Backbuffer

Draw call

Draw call Draw call

Draw call Draw call

Frame start
Layered
Output

FBO

Conversion to
native format

Layer 1

Layer N

Figure 5. A generic approach to conversion: Draw
calls are intercepted and duplicated internally for each
view of quilt. Rendering to the Back buffer is detected
and replaced with rendering to layered FBO,
representing the quilt. In the end of frame, the quilt is
post-processed and rendered to backbuffer.

3.1 Injection to programmable pipeline
Shaders and programs are changed by intercepting
their respective API methods for creation, attachment,
compilation, and linking. It’s sufficient to intercept
linking itself, and use OpenGL querying methods for
introspection of attached shaders to obtain their source
codes.

In order to draw multiple views, it’s necessary to
alter VS or GS so that the transformation of vertices is
changed for corresponding view. OpenGL’s standard
itself does not define how the transformation should
be arranged in shaders for input data. Applications are
free to set up arbitrary sequence of statements, which
fulfill their needs, provided the chain results in output
vertex position in clip-space.

In this paper, we skip description of injection to
Geometry Shader (referred as GS), as it is done analo-
gously with only few additional steps.

The transformation shaders in most of applications
may have one of following variations:

• Identity function
Vertex shader simply copies the input vertex

data to output. This kind of behavior is used for
instance for rendering full-screen quad geometry
for post-processing, or for rendering elements
of GUI, which tends to have their position pre-
calculated at CPU-side.

• Matrix multiplication
The most common shader type, which follows
MVP transformation. Typically, it gets either
MVP or pair Model and View-Projection matrices
using uniforms, and then, simply multiply the
input vertex position with these matrices.

• Far plane rendering
Far plane rendering is a special case of previous
methods, in which the resulting output vector
has w component set to 1, effectively placing the
geometry at the position of far plane. In addi-
tion, this maybe accompanied with Model-View
matrix only using rotation and scale to simulate
directional rendering.
This is commonly used when rendering sky-
boxes.

• Constant propagation
Vertex shader sets output position to a hard-
coded vector, stored inside shader’s code. This
is an extreme case, for instance, used to generate
a full-screen quad.

By determining which variant the vertex shader
implements, it’s possible to identify the projection
matrix’s uniform name, which is need for reverting
clip-space to camera-space position. If the transfor-
mation shader does not use matrices, the alternation of
shader is terminated, and the original shader program
is used. This typically happens for HUD rendering.

The injection thus follows two goals: finding the
name of projection matrix and altering the transfor-
mation pipeline to append reversion, shift, and repro-
jection at the end of shader. The latter is described
in Section 3.3. The resulting pipeline is visualized in
Figure 6.

Model-space

Clip-space

Camera-space

Input
Vertex

Output
Vertex

Original
Shader

Inversion
of projection

Translation
left/right

Projection
with shear

Figure 6. Steps in new transformation shader, created
using composition of the original shader and
additional steps. Conversion of VS is possible by
renaming main() function and introducing new main()
function with additional steps.

In theory, analysis is done by parsing GLSL and
inspecting the resulting Abstract Syntax Tree. Due to

the shortage of time, it was instead implemented using
Regular expressions over source codes. In both cases,
the analysis starts with tracking operations, used for
assigning to gl Position.

After deciding the type of transformation of orig-
inal VS or GS, it is necessary to remove projection
from the transformation to obtain output positions in
camera-space instead of clip-space. Then, the horizon-
tal translation for corresponding views is applied, and
the original projection can be reapplied.

In the general case, it is necessary to estimate pro-
jection from a single MVP matrix. The following sec-
tion describes when such decomposition is possible.

3.2 Estimating projection from ModelView-
Projection matrix

It is possible to show that projection matrix can be ex-
tracted from MVP provided that projection is symmet-
ric projection and Model-View matrix (referred as MV)
only contains so-called uniform scaling matrix (thus,
equal scale in all dimensions) as a scaling matrix. This
isn’t always necessary as programmers prefer split-
ting MVP to model and view-model parts to minimize
uniform-passing operations and CPU cycles.

Instead, we give the idea of extracting projection
parameters from View-Projection matrix (referred as
VP). In generic case, View matrix (referred as V) de-
fines inverse of camera transformation in world-space,
and thus, it can be expressed as some R ∈ SO3 and
t ∈ R3.

Symmetric projection with parameters n (near-
plane distance), r (right clip-plane), t (top-clip plane)
and f (focal length) is defined in Equation 1.

n
r 0 0 0
0 n

t 0 0
0 0 −(f+n)

f−n
−2 f n
f−n

0 0 −1 0

 (1)

Let’s denote Fx =
n
r ,Fy =

n
t , A = −(f+n)

f−n and B = −2 f n
f−n .

By multiplying V with P, obtained VP matrix has the
property of norm(x11,x12,x13) = Fx due to orthonor-
mality of SO3 and diagonal form of 3×3 submatrix of
projection. The same property applies to row 2 and 3,
thus we can obtain Fx,Fy and A directly by normalizing
1th, 2nd and 3rd row of 3×3 submatrix of the resulting
matrix, respectively.

Remaining B can be obtained by solving linear
system A · (−x44)+B = x43.

3.3 Injecting transformation’s chain
Obtained parameters are sufficient to transform clip-
space coordinates to camera-space by multiplying x

and y with inverse of Fx and Fy, respectively. Depth can
be extracted as−w. Afterwards, the vertex is translated
and projection is applied by constructing projection
using extracted parameters and shear for side views
of quilt. Note that clip-space coordinates in OpenGL
are homogeneous coordinates prior to division by w
component, and thus, such operations are possible.

Also, note that projection parameters are only ex-
tracted when a new matrix is uploaded to shader via
glUniform4v. The extracted parameters are then
passed to each draw call as an additional vec4 uniform.

3.4 Shadowing of Frame Buffer Objects
The aforementioned conversion works fine provided
the application renders directly to the Back buffer. As
complex applications use artificial Frame Buffer Ob-
jects (referred as FBO), it is necessary to define the
flow for these. One approach is to split the texture of
FBO to a grid directly and use glViewport inter-
nally, but this requires tracking to detect if the texture
is sampled during the next draw calls, and intercept &
alter sampling code in shader so that proper subregion
of texture is sampled instead.

Alternatively, it is possible to replace (shadow) an
FBO with an internally created layered FBO, made
of layered textures. The number of layers matches
the count of views in quilt. This approach requires
tracking of FBO’s lifetime and replacing sampling
operations of the layered FBO’s texture in all affected
shaders. This paper relies on this approach.

In conclusion, during each draw call, the layered
FBO is rebound and the draw call is drawn using Ge-
ometry Shader with instancing. If such drawing is
possible only using VS, a temporary FBO is created
for each view of quilt of given layered FBO. This pos-
sible thanks to Texture View mechanism of OpenGL. A
texture view is a proxy texture object which may point
to sublayer or sublevel of a different texture.

Finally, when the texture of the original FBO is
about to be rendered, the intercepted draw call is dis-
patched for each view with view’s Texture View, bound
instead of the texture.

4. Fixed-pipeline rendering

For injection to fixed-pipeline, it is sufficient to track
draw calls as the transformation only depends on the
top of the transformation stack, which is filled by ap-
plication using specialized API calls. The translation
of side views can be added by multiplying the top of
the transformation stack (GL MODELVIEW) from left
using glMultMatrix with translation prior to each
duplicated call. The projection is always stored in a

separate GL PROJECTION stack and can be affected
and investigated by tracing operations for pushing ma-
trices to the stack.

4.1 Replicating geometry using glCallList
A typical fixed-pipeline application uploads the geome-
try by successive sequential API calls, vertex by vertex.
In theory, in order to replicate such mesh, one would
have to record the sequence of geometry uploads and
replicate the sequence each time a different view is
rendered.

glBegin

B E

glVertex/glColor
glEnd

DrawCall 1

B E

DrawCall 2

B E

DrawCall 3

B E

Record draw call 1

TO2TO1 TO3

TO1 NL EL TO1 CL

Calls:

TO N CL…

View 1 View N

Draw call 1 to multiple frames of quit

Calls:

Injected
application

Original

glNewList

glCallList

glEndList

Figure 7. An OpenGL calllist is used to record
sequence of geometry API which made up a draw call.
Subsequently, the draw call is repeated for each view
of quilt by calling the list.

Fortunately, such mechanism is already implemented
in OpenGL under name glCallList. A call list is
a recorded sequence of OpenGL API calls, supporting
a subset of OpenGL API, mostly including geometry,
transformation and shading API calls. The use of call
list for duplicating draw calls is illustrated in Figure 7.

5. Implementation
The method described in this paper has been imple-
mented for OpenGL on Linux platform. The conver-
sion layer is compiled as a dynamic library, which is in-
jected into the application’s process using LD PRELOAD
functionality and methods are hooked by attacking
dlsym/dlopen functions to override addresses of
imported symbols.

In addition, hooked functions are also defined and
exported explicitly with linked shared library to sup-
port applications which are statically linked to a shared
library of graphical driver.

6. Limitations
The limitations of the presented method can be divided
into two categories. Firstly, problems stem from ambi-
guities and limited knowledge of black box conversion.
Secondly, due to limited time to deliver, implemen-
tation trade-offs are causing failure in a few specific
use-cases.

6.1 Flatness of HUD
Any rendering technique which projects 3D positions
to screen and pass such position to transformation in-
stead of transformation matrix itself are limited to flat
2D rendering due to missing spatial information. Nat-
urally, this is mostly the case for HUD, but in addition,
this may affect billboarding as well.

6.2 Frustum culling
The presented method works over subspaces of vol-
ume, provided in draw calls. A typical optimized en-
gine will employ techniques to skip drawing of meshes,
which are invisible from the application’s point of view.
This may affect side views of quilt due to missing in-
formation in draw calls.

6.3 Shading transformations
Applications implement shading in fragment shader
based on angles or positions of lights and position of
view. In order to achieve shading which corresponds
to the correct shifted position of view, these must be
altered as well. However, as no standard exists for
passing such data to fragment shader, more complex
analysis is required to understand which outputs of
transformation pipeline must be changed, and this typ-
ically fails.

This limitation is clearly visible when rendering
reflective materials, resulting in improper specular re-
flections, and can be perceived in Figure 8.

Figure 8. The same reflection on golden sphere’s
surface in side view (right) as in the front view (left),
caused by missing propagation of altered
transformation matrix to computation of camera-space
position and pixel’s normal in Fragment Shader.

This could be solved by allowing experienced users
to manually edit the injected transformation shader.
Changes could be associated permanently with spe-
cific shader by hashing content of the original shader.

6.4 Complexity of programmable shaders
Currently, Regular expressions are used to automati-
cally extract metadata about used uniforms and oper-
ations in shaders. This results to failures of detection
in complex applications, which may use variable shad-
owing or if-else branching. We believe this could be
improved by using a proper GLSL parser and employ-
ing more complex analysis.

Figure 9. Pairs of images, showing original application (left) and resulting quilt (right). The first pair
demonstrates ability to convert a regular render with more complex mesh. The second pair demonstrates shadow

mapping consistency. The third features skybox rendering. The last sample shows failure due to technique
SSAO, which uses transformations in Fragment Shaders. All examples were converted automatically, and

originate from LearnOpenGL’s repository.
Q/Res 1282 2562 5122

1x1 16.5ms 16.5ms 16.5ms
3x3 63.8ms 70.3ms 71.5ms
5x9 263.9ms 271.0ms 284.5ms

(a) Stanford dragon (complex geometry)

Q/Res 1282 2562 5122 10242 20482 40962

1x1 16.5ms 16.5ms 16.5ms 16.5ms 16.5ms 16.5ms
3x3 16.5ms 16.5ms 16.5ms 20.6ms 36.0ms 56.4ms
5x9 19.4ms 32.3ms 50.2ms 69.5ms 93.1ms 166.5ms

(b) Steep Parallax Mapping scene (complex shading)

Q/Res 1282 2562 5122 10242 20482

1x1 16.1ms 16.2ms 16.1ms 16.5ms 16.4ms
3x3 16.5ms 16.5ms 16.5ms 16.5ms 16.5ms
5x9 16.5ms 16.1ms 24.2ms 37.9ms 65.6ms

(c) Cubes (simple geometry)

Q/Res 1282 2562 5122 10242 20482

1x1 21.3ms 22.5ms 21.0ms 21.3ms 21.8ms
3x3 23.4ms 22.1ms 26.0ms 25.8ms 32.7ms
5x9 67.3ms 74.5ms 86.0ms 105.3ms 144.3ms

(d) Asteroids (many trivial draw calls)

Table 1. Average frame period. Lower is better. Quilt (number of views) vs resolution (width/height of each of
view). Test setup: Intel(R) Core(TM) i5-5200U CPU @ 2.20GHz and NVIDIA GTS 920M.

7. Experiments with applications

The implementation has been tested on publicly avail-
able OpenGL applications.

The programmable pipeline was tested using OpenGL
tutorials such as LearnOpenGL3 to verify different
techniques. The method has been employed on exam-
ples of techniques such as Shadow mapping, Normal
mapping, Skybox drawing, or drawing to auxiliary
framebuffers. For techniques such as Screen-Space
Ambient Occlusion (SSAO), the method failed to pro-
vide consistent multiview image, due to suspected
problems in passing data to FS (see Section 6.3).

The fixed-pipeline OpenGL was tested on such as
NeHe tutorials4 and more complex application Nexuiz.
Due to simplicity of fixed-pipeline transformation, an
implementation based on the method above is suffi-
cient to convert most of such applications with minimal
visual drawbacks.

3GitHub.com:JoeyDeVries/LearnOpenGL
4GitHub.com:gamedev-net/nehe-opengl

7.1 Performance measurement

The impact of injection was measured on selected sup-
ported applications. The results are shown in Table 1.
Each measurement was a recording of frame period
(time per frame) in milliseconds. The measurements
test correlation between the frame rate and increasing
number of views, and correlation between increasing
resolution and frame period.

Three different applications were used. Stanford
dragon features a large mesh, which should solely fill
the pipeline. Cubes provides trivial geometry with sim-
ple shading. The purpose of Steep Parallax Mapping is
to feature simple geometry, but expensive shading, so
that the dependency on resolution could be measured.
Finally, Asteroids provide hundreds of draw calls with
trivial geometry

Clearly, it can be concluded that the injection and
rendering into multiple views affect performance. In
case of complex geometry, but cheap shading, the per-
formance does not depend much on resolution, because

https://github.com/JoeyDeVries/LearnOpenGL
https://github.com/gamedev-net/nehe-opengl/tree/master/linuxglx

the graphics card’s pipeline is busy with transforma-
tion of geometry.

Contrary, in case of expensive shading, the pe-
riod increases less than twice when the resolution is
doubled. While keeping same number of views, the
frame period is linearly dependent on increasing the
resolution.

In more complex geometric scenes, the perfor-
mance directly depends on the number of views. In
some non-optimized scenes, such as Asteroids, which
dispatch many draw calls with trivial meshes, perfor-
mance does not decrease linearly with number of views
initially, because instancing of Geometry Shader can
help in overcoming the overhead of many draw calls
with simple geometry.

In conclusion, the exact effect on performance de-
pends on scene’s complexity and complexity of shad-
ing. For simple applications and lower resolutions,
the effect can be minimal, in some cases negligible.
Note that contemporary Looking Glass Display use
2500x1600 LCD display, which results in 4MPix. A
5x9 quilt with 512x512 texture size exceeds 11MPix.

8. Conclusion
The paper describes process and implementation of a
conversion of arbitrary OpenGL 3D application with
single-view output to multiview output by introducing
a conversion layer and thoughtfully rewriting methods
of OpenGL API.

The implemented software can be used as-it-is for
bringing numerous applications such as legacy 3D
games to autostereoscopic displays, and this has been
verified for various applications using various render-
ing techniques. The impact on performance has been
measured, and it strongly depends on the complexity
of application’s scene.

With minimal programming effort, the implemented
injector could be extended to render stereo for Head-
Up Displays, which may fill the hole of similar soft-
ware for OpenGL as DirectX has been primarily aimed
by such software in the past.

This paper has shown that it is possible to treat
vertex transformation as a black box process and alter
the transformation and projection at the same time.
The convertor can be used to produce ground truth of
multiview output, which could be used to aid further
development of approximate single/stereo to multiview
conversion methods.

In the future, the method and its implementation
could be extended to support a broader subset of OpenGL
applications, and to provide support for platform-conversion

tools such as Wine5, or to compensate for limitations
such as frustum culling.

Acknowledgments
I would like to thank my supervisor Ing. Tomáš Milet
for his help and knowledge. Finally, I can’t forget to
say thanks to my girlfriend, that still loves me despite
spending evenings and nights mentally focused on my
master’s thesis.

References
[1] Nick Holliman. 3D Display Systems. 38, 12 2002.

[2] Quilts. https://docs.
lookingglassfactory.com/
KeyConcepts/quilts/.

[3] HoloPlay Core SDK. https://
docs.lookingglassfactory.com/
HoloPlayCore/HoloPlayCore-SDK/.

[4] BlueSkyDefender. Github: Blueskydefend-
er/depth3d. https://github.com/
BlueSkyDefender/Depth3D. Accessed:
2021-02-10.

[5] Features - vorpX - VR 3D-Driver for Oculus
Rift, Apr 2018. https://www.vorpx.com/
features/.

[6] Mostafa Mehrabi, Edward M. Peek, Burkhard C.
Wuensche, and Christof Lutteroth. Making 3d
work: A classification of visual depth cues, 3D
Display Technologies and Their Applications. In
Proceedings of the Fourteenth Australasian User
Interface Conference - Volume 139, AUIC ’13,
page 91–100, AUS, 2013. Australian Computer
Society, Inc.

[7] Alexandre Chapiro, Simon Heinzle, Tunç Ozan
Aydın, Steven Poulakos, Matthias Zwicker, Aljosa
Smolic, and Markus Gross. Optimizing Stereo-to-
Multiview Conversion for Autostereoscopic dis-
plays. Comput. Graph. Forum, 33(2):63–72, May
2014.

[8] Petr Kellnhofer, Piotr Didyk, Szu-Po Wang,
Pitchaya Sitthi-Amorn, William Freeman, Fredo
Durand, and Wojciech Matusik. 3DTV at Home:
Eulerian-Lagrangian Stereo-to-Multiview Conver-
sion. ACM Trans. Graph., 36(4), July 2017.

5https://www.winehq.org/

https://docs.lookingglassfactory.com/KeyConcepts/quilts/
https://docs.lookingglassfactory.com/KeyConcepts/quilts/
https://docs.lookingglassfactory.com/KeyConcepts/quilts/
https://docs.lookingglassfactory.com/HoloPlayCore/HoloPlayCore-SDK/
https://docs.lookingglassfactory.com/HoloPlayCore/HoloPlayCore-SDK/
https://docs.lookingglassfactory.com/HoloPlayCore/HoloPlayCore-SDK/
https://github.com/BlueSkyDefender/Depth3D
https://github.com/BlueSkyDefender/Depth3D
https://www.vorpx.com/features/
https://www.vorpx.com/features/
https://www.winehq.org/

	Introduction
	Background
	Proposed solution
	Fixed-pipeline rendering
	Implementation
	Limitations
	Experiments with applications
	Conclusion
	References

