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Abstract

The growing problem of the popularity of using deep neural networks is their black box representation.
The lack of transparency is raising questions about their reliability, credibility, or vulnerability to
adversarial attacks. This caused rising demand for neural network explainability. The goal of
this paper is to replicate existing experiments on a gender classification model and extend these
experiments to analyze and uncover vulnerabilities of a network trained for gender classification
on audio signal spectrograms. The easiest way to explain something is through visualization. For
this, a layer-wise relevance propagation technique was chosen in this work because it produces
easy-to-understand heatmaps of features relevant to a neural network. The heatmaps are produced
by back-propagating relevances through a network from the output to the input layer. Two neural
network models with AlexNet and ResNet architecture were used. Experiments with AlexNet model
show that the network’s predictions are highly dependent on a small number of time-frequency
(TF) bins. By augmenting the training data using obtained relevance maps, | managed to lower the
dependency on these bins. As a result, the prediction accuracy, when these bins were not present,
was increased by 15%. The proposed approach can potentially lead to increased robustness of
models, preventing or reducing the impact of adversarial attacks. Interpretation of ResNet model
showed dependencies on lower frequencies and time. Producing interpretable heatmaps of the
ResNet model required the implementation of more robust LRP rules.
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Deep neural networks are, nowadays, heavily used as
state-of-the-art solutions to problems like image, audio
processing, or natural language understanding. Yet,
they still represent a black box where input comes into
the neural network and prediction comes out, but in-
ner decision-making remains hidden. By analyzing
some high performing models trained for image clas-

sification, discoveries showed that predictions were
dependant on artifacts such as image watermark[ 1] or
background[2]. Even though these models have high
accuracy of predicting ground truth on train or test
datasets, the reasons for these predictions are consid-
ered wrong. Such problems of the models are hard to
uncover on limited datasets and end up revealed after
a while, if at all.
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As demand for explainable neural networks is ris-
ing, more discoveries and experiments are made. Be-
cause the easiest way to explain and understand some-
thing is through visualization, interpretation of image
classification models can be easily understood. This
paper aims to bring more insight into how deep neural
network models decide when predicting a person’s gen-
der from speech recording processed as a spectrogram,
following previous work on this topic [3].

Convolution neural network with AlexNet archi-
tecture was trained on spectrograms of audio signals
from AudioMNIST dataset[3], achieving 97% accu-
racy of predicting correct gender. The Layer-wise
relevance propagation was chosen as an explanation
method for its reliability, implementation efficiency.
Produced heatmaps of relevances revealed that the
model’s predictions were heavily dependent on few
time-frequency (TF) bins. I manage to lower depen-
dency on these few TF bins and boost the model pre-
diction accuracy, when values of these bins are set to
zero, by 15%. The same technique could be used on
other speech processing models, uncovering decisions
and potentially making them more robust and safer to
adversarial attacks.

Convolutional neural networks (CNN), as a type of
the Deep neural network (DNN), are very popular for
image and even audio classification problems. These
architectures are composed of a chain of multiple lay-
ers, where every layer has a significant number of
learnable parameters. CNNs architectures have great
performance in pattern recognition and their advan-
tage comes mainly from reduced number of learnable
parameters due to the utilization of convolution and
pooling layers [4].

2.1 Uncovering Clever Hans predictors

In image classification, several experiments were pro-
posed to discover if it is possible to explain what fea-
tures are the predictions based on. An interesting fact is
that these experiments uncovered the so-called Clever-
Hans predictors [5]. The clever Hans predictor is a
term for a deep neural network model whose decisions
and performance may perform extremely well on train
and validation datasets but may fail in real-life applica-
tions because it learned to use undesirable features in
images. For example experiments in the article uncov-
ered that high performing model based its prediction
of a horse in the image on the occurring watermark
[1]. In other experiments [2], the model learned to
distinguish between wolf and husky based on snow

in the background. These experiments show the im-
portance of interpretation methods and neural network
interpretation in general to prevent previously men-
tioned problems. However, a lot of these discoveries
were made by accident rather than targeted research,
but they can be the right step towards a better under-
standing and improving neural networks.

2.2 Difficulties in explaining Neural Networks
Explaining deep neural networks comes, according to
Toward Interpretable Machine Learning|6] research,
with three main difficulties caused by the complexity
of the models. The complexity comes from the number
of layers that perform linear and non-linear transfor-
mations of the input. The first difficulty comes from a
combination of neurons that are activated locally, by
the small fraction of data points, and neurons activated
more globally. Thus the output of the networks is af-
fected by global as well as local effects in the input.
The second difficulty comes from the presence of a
shattered gradient|7] effect in ReLU neural networks
with higher depth, where the gradient becomes more
fast-changing. This can cause problems in explana-
tion methods that depend on the usage of the model’s
gradient, such as sensitivity analysis or simple Tay-
lor decomposition [8]. The last difficulty is finding a
reference point as the base of the explanation. This
problem comes from local explanation methods where
the explanation methods are based on a comparison of
predicted output and the reference point. The output
can change rapidly based on the reference point, even
when the reference point does not carry any significant
information for further interpretation.

2.3 Comparison of different methods
Different methods were proposed to attempt to ex-
plain various neural network models. The article by
W. Samek and G. Montavon[6] summarized three ex-
planation methods belonging into distinct groups of
explanation, each with different advantages and disad-
vantages.

First method is Occlusion analysis [9], which is
a specific type of perturbation analysis, where input
features of neural network or whole patches are be-
ing occluded. For example, when explaining models
trained for image classification, square regions of the
input image are replaced with grey or zero values. The
relevance heatmap is obtained by measuring the effect
of occluded regions on the prediction and accuracy
of the explained model. This method is the easiest to
implement, does not require access to the source code
of a model, but is the worst of the three mentioned
methods in terms of runtime efficiency.



Another method is Integrated Gradients belonging
to a group of methods for explaining deep neural net-
works based on their gradients. Other variant is, for
example, SmoothGrad [6]. The Integrated Gradient
method utilizes sensitivity of backpropagation meth-
ods and implementation invariance of gradients. On
the other hand, it suffers from the shattered gradient
problem [7]. In addition, this method is almost as slow
as Occlusion analysis.

The last proposed method is Layer-wise relevance
propagation (LRP) which belongs to a group of back-
ward propagation techniques. The goal of LRP is to
produce heatmaps of positive and negative relevances.
These techniques utilize deep neural networks’ layered
structure. They scale better when used on complex
deep neural networks than gradient-based methods,
but can be used also on different machine learning
models. The heatmap is obtained by backpropagating
relevances from the output layer through the model to
the input layer. This method does not use a model’s
gradient, therefore is resistant to a shattered gradient
effect. In [6], LRP was placed in first and second place
in terms of runtime efficiency and human interpretabil-
ity. On the other hand, LRP depends on access to the
neural network’s source code as its implementation
depends on a model’s structure.

Every method produces slightly distinct relevance
scores and heatmaps. In computer vision, for example,
LRP tends to highlight features mostly in favor of
positive relevances. The occlusion method highlights
important regions in the image. And the integrated
gradient highlights relevant time-frequency bins but
shows more negative relevance in heatmap than LRP.

2.4 Speech interpretation

Because one of the best ways to interpret neural net-
works is through visualization, the interpretation of
audio signals can be more challenging than image in-
terpretation. It seems that interpreting neural network
models for audio classification is not as popular or is
in progress due to the higher difficulty. To gain new
insight into audio signal classification, a few experi-
ments were proposed in articles by W. Samek and G.
Montavon[3] and S. Becker with others [6]. The exper-
iments were done on raw waveforms and audio spectro-
grams using the AudioMNIST[3] dataset. Layer-wise
relevance propagation was chosen as an explanation
method for used CNN models. In both cases, raw
waveforms and audio spectrograms, LRP highlighted
features based on their contribution to the prediction.
Results showed that raw audio signals are not the best
way to explain neural networks. LRP highlighted rel-
evant features in a raw waveform, but they are hard

to interpret to obtain new information about neural
network decisions. On the other hand, spectrograms
brought insight into how lower frequencies affect gen-
der predictions. The approach in this work is inspired
by the article created by W. Samek and G. Montavon

[3].

Layer-wise relevance propagation (LRP)[10] computes
activation scores in forward pass and subsequently
propagates the output of the network as relevance
scores in a backward direction towards the input layer
using propagation rules. Information about different
rules and their effect is derived from [11] and [12].
The propagation process is conservative analogous
to Kirchhoff’s current law in electrical circuits. In
neural networks, this means that all activation energy
or relevance (in backward propagation) flowing into
the neuron has to flow out of the neuron, i.e., being
redistributed into the lower layer. The product of back-
propagation is a heatmap showing relevant features
that have a positive (red) and negative (blue) impact
on the model’s prediction.

The basic equation, also referred to as the LRP-
0 rule, to propagate relevances through the model is
defined as:
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where j and k are neurons of two consecutive layers,
R; is relevance of neuron j, Ry is relevance of neuron
k computed in previous layer, or in case of the output
layer, Ry is output of the model, a; is activation en-
ergy of neuron j, i.e. output value of the activation
function, and w j is value of weight between neuron
Jj in given layer and neuron k in previous layer (in the
back-propagation direction from the output layer to
the input layer). The numerator a;w j; represent con-
tribution of neuron j to neuron k. The basic rule can
be improved to produce a more robust explanation of
a model.

The first improvement is denoted as the LRP-¢€ rule
consisting of a constant value € added to the denomina-
tor (2). The addition of € causes small or contradictory
relevances of neuron k to be absorbed, producing a less
noisy heatmap with fewer input features presented.

R ajwjk
T ):jajok—l-S-sign(Zjajwjk)
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Another possible improvement from LRP-0 is a rule
denoted as LRP-vy (3) achieved by disproportionately
favoring the positive contribution of relevances. The



value of 7y determines how much are positive rele-
vances favored over negative ones producing more
stable, smooth, and less noisy heatmaps.

R=Y aj- (Wi +wy)
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In equation 3, w;.;( is defined as positive part of weight
of neuron j, i.e., w}jc = max(0,wj).

4. Experimenting with neural network in-
terpretation

The following experiments aim to determine LRP faith-
fulness, analyze the accuracy of trained models with
different validation datasets and attempt to reduce high
model sensitivity to a small number of features.

4.1 Gender classification

In this work, I implemented a model and Layer-wise
relevance propagation using PyTorch library [13]. The
model is a convolutional neural network with AlexNet
architecture [14] consisting of five convolution layers
with ReLU activation functions and max-pooling layer,
and three fully connected layers for classification. The
properties of layers and size of kernels were adjusted as
described in articles by W. Samek and G. Montavon [3].
Layer-wise relevance propagation was implemented in
two steps. Firstly, the activation energy and parameters
of each layer are stored using forward-hooks in the
forward pass of input through the model. Secondly,
the heatmap is produced by propagating the model
prediction backward using stored parameters of each
layer and the LRP-0 rule. In this case, this rule is
sufficient enough to provide heatmaps interpretable to
humans and correctly finding the most relevant time-
frequency bins, as shown in Figure 3.

Heatmap produced by the trained model is shown
in Figure 1, where red highlights positive relevances
and blue negative ones. After adding the heatmap
on the top of the original spectrogram Figure 2 we
can see that the model’s gender prediction is truly
based on the lower frequencies of audio recording,
which corresponds with the study of female and male
fundamental frequencies[15].

4.2 AlexNet model performance

The AlexNet model was trained on the AudioMNIST
dataset[3] on 200 epochs with the learning rate set to
le —4. The training set consists of 6000 spectrograms
with a size of 227 x 227 time-frequency bins. Half of
the training set was male recordings and half female.
The achieved accuracy of this model was 97.8% on
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Figure 1. Produced heatmap of correctly classified
female audio recording.
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Figure 2. Heatmap on top of spectrogram showing
that time-frequency bins representing lower
frequencies are most important for correct prediction.

a test set consisting of 1500 male and 1500 female
recordings. The faithfulness of implemented LRP on
AlexNet models was tested using the pixel-flipping
method. The Pixel-flipping method sets the value of
a spectrogram’s bins to 0 w.r.t. heatmap generated by
LRP. Time-frequency bins are set to zero from the most
relevant to least by sorting all bins in a heatmap based
on their value in descending order. Then, the bins
with the highest positive relevance values are chosen.
Assuming that LRP works correctly and highlights
the most relevant bins, the model accuracy should
decrease rapidly when these bins are not present. The
blue curve in Figures 3, 4 and 6 represents AlexNet’s
accuracy on input data modified by pixel-flipping using
LRP. The orange curve represents the accuracy of the



same model, but the input data are modified by pixel-
flipping randomly. Figure 4 provides a closer look at
the accuracy decrease by modifying data from O to
1% using a heatmap produced by LRP. The results in
Figure 3 show that the model is highly dependant on a
small number of features. The accuracy dropped from
97.8% to 12.3% when only 0.5% of bins were set to
zero. This result differs from the original paper. I do
not know how was the pixel-flipping implemented in
the original paper. However, the drop in the model’s
accuracy in my experiments was caused by the model’s
high dependency on a small number of time-frequency
bins. Therefore, setting these bins to zero created
a big predominance of bins with negative relevance
scores towards the correct prediction. The presence of
bins with negative relevance values and the absence
of bins with positive relevance values towards correct
prediction caused the model to predict the opposite
gender nearly every time.
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Figure 3. AlexNet model trained on AudioMNIST
dataset accuracy w.r.t. percentage of each
spectrogram’s bins set to zero in validation set.
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Figure 4. Same principle as Figure 3 but closer look
of accuracy drop from 0% to 1% of bins set to zero.
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Figure 5. Spectrogram with 0.5% most relevant bins,
i.e., bins with the highest positive relevance values,
are set to zero.

4.3 Improvement with LRP augmented dataset
High dependency on such a small number of features
as showed in the previous experiment is not ideal and
can make the model vulnerable to noisy input or adver-
sarial attacks. Because of this, I propose to use LRP
as an improvement tool for a previously trained model.
Data of the AudioMNIST training set was modified
w.r.t. the most relevant bins according to LRP as fol-
lows. The value of 0.5% of the most relevant bins
Figure 5, in each spectrogram, was set to the mean
of their Moore neighborhood. The pre-trained model
from 4.2 was then again trained on this augmented
dataset. Evaluation using the original AudioMNIST
validation set and pixel-flipping method showed that
this newly trained model has slightly higher accuracy
on the original dataset. In addition, the performance of
the model when the most relevant bins are not present
has been more than doubled as shown in the Table |
and Figure 6.

To extend previous experiments with AlexNet, I ap-
plied the LRP method to a more complex model for
speaker classification. This model is based on ResNet34
architecture[ 1 6] with some changes to perform well on
a designated task. This architecture is using mainly a
combination of 2D convolutional layers (Conv2d) and
2D batch-normalization (BatchNorm2d) layers with
dense layers at the end. Pretrained model was pro-
vided by VUT FIT with a classification accuracy of
96%. Input data for this network are 64-dimensional
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Figure 6. Previously trained AlexNet model trained
again on augmented AudioMNIST dataset. Accuracy
is showed w.r.t. percentage of each spectrogram’s bins
set to zero in validation set.

Table 1. Each model with its prediction accuracy is
presented in separate row. AlexNet represents basic
CNN model trained on AudioMNIST dataset,
AlexNet_augmented is additionally trained on
augmented AudioMNIST dataset, as described in
subsection 4.3. Other columns show model’s accuracy
on validation datasets where 0% and 0.5% of the most
relevant spectrogram bins were set to zero,
respectively.

Model 0% 0.5%

AlexNet 97.8% 12.3%
AlexNet_augmented 98.7% 28.4%

filter banks from the VoxCeleb dataset[17][18][19]
augmented with noise and music. The prediction of
the model is tensor of size (N,5994), where N repre-
sents batch size, and classified speaker ID is obtained
as y = argmax(logits), where logits represent the value
of each speaker. A spectrogram of the input data is
shown in the Figure 7. Heatmap produced only by us-
ing the LRP-0 rule is shown in Figure 8. In the case of
this ResNet model, produced heatmaps are noisy and
hard to interpret. The LRP-0 method creates clusters
of mixed time-frequency bins with positive and nega-
tive relevance values. Because the LRP-0 rule tends
to create noisy heatmaps, more robust rules, such as
LRP-¢ and LRP-7, need to be used.

I updated the relevance propagation using LRP-
€ with € = 0.5. In this experiment, the LRP-0 is

seconds

Figure 7. Spectrograms of VoxCeleb features of the
2s segment of recording.
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Figure 8. Heatmap produced by LRP-0 overlayed on
top of features of a 2s segment of recording from
VoxCeleb dataset.

only used for linear and 1D batch normalization layers
near the output layer. For hidden layers consisting of
Conv2d and BatchNorm?2d layers and input layer, the
LRP-¢ rule was used. Heatmap produced by this up-
dated method, with positive (red) and negative (blue)
time-frequency bins, is shown in Figure 9. By introduc-
ing the LRP-¢€ rule, the heatmap is less noisy, bins with
positive and negative relevance values are no longer
mixed, and they are more distributed along the time
axis. In Figure 10 is shown evaluation of the model
with the pixel-flipping method. The pixel-flipping
evaluation for speaker ID interpretation is based on
the same principle as in previous experiments with
AlexNet. Based on these results, I assume that the
Resnet model for speaker ID classification is based on
the lower frequencies (similar to the AlexNet model)
in time.
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Figure 9. Heatmap produced by the combination of
LRP-0 and LRP-¢ overlayed on top of features of a 2s
segment of recording from VoxCeleb dataset.

Even though using LRP-0 and LRP-¢ showed promis-
ing results, I tried adding the LRP-7 rule with value
vy =5 for 1/3 of the hidden layers in the upper part of
the model, i.e., layers closer to the input layer. Figures
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Figure 10. ResNet model’s accuracy w.r.t. percentage
of each spectrogram’s bins set to zero. Blue curve
represents setting time-frequency bins to zero in
descending order from the ones with the highest
positive relevance value. Random curve represents
setting time-frequency bins to zero at random.

11 and 12 show produced heatmap and faithfulness
evaluation with the pixel-flipping method, respectively.
The LRP-y rule favors the time-frequency bins with
positive relevance values (red); therefore, these areas
are a bit clearer, and more bins have positive relevance.
Because the LRP-7y favors bins with positive relevance
values and gamma=>5, the positive values are much
bigger than in the heatmap produced only with the
combination of LRP-0 and LRP-£. Another effect
of using the LRP-7 is that some bins are presented
as more relevant; therefore, the drop in accuracy in
Figure 12 is not as steep as in Figure 10.
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Figure 11. Heatmap produced by the combination of
LRP-0 and LRP-¢ and LRP-7 overlayed on top of

features of a 2s segment of recording from VoxCeleb
dataset.

This paper presented an analysis and prediction im-
provement of the deep neural network model trained
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Figure 12. ResNet model’s accuracy w.r.t. percentage
of each spectrogram’s bins set to zero. Blue curve
represents setting time-frequency bins to zero in
descending order from the ones with the highest
positive relevance value. Random curve represents
setting time-frequency bins to zero at random.

for speech classification. Model predictions were ex-
plained using heatmaps produced by the LRP method,
showing the model vulnerability and high dependency
on a small number of features presented in lower fre-
quencies. These heatmaps were then used to create a
dataset by augmentation of the original AudioMNIST
dataset. This new dataset served as a second training
dataset for the model, increasing its robustness. The
accuracy of the analyzed model was increased from
12% to 28% when the most relevant features were not
present in input data. Interpretation of the ResNet
model trained for speaker classification showed that
this model is more robust than the proposed AlexNet
model. The ResNet model classification is based on the
lower frequencies, which is similar to the gender clas-
sification. The presence of the relevant time-frequency
bins throughout the time confirms the expected behav-
ior of this model and shows that the model is well built
and trained neural network. Achieved improvement
and results can be extended even more in further works.
Potentially making speech classification models more
resistant to noise or adversarial attacks, or used for

gaining more knowledge of specific models and their
behavior.
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