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SAT solver in nondeterministic automata
minimization
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Abstract
Nondeterministic finite automata (NFA) are widely used in computer science fields, such as regular
languages in formal language theory, formal verification, high-speed network monitoring, image
recognition, hardware modeling, or even in bioinformatic for the detection of the sequence of
nucleotide acids in DNA. Automata minimization is a fundamental technique that helps to decrease
resource claims (memory, time, or a number of hardware components) of implemented automata.
Commonly used minimization techniques, such as state merging, transition pruning, and saturation,
can leave potentially minimizable automaton subgraphs with duplicit language information. These
fragments consist of a group of states, where the whole language of one state is piecewise covered
by the other states in this group. The paper describes a new minimization approach, which uses
SAT solver Z3, which provides information for efficient minimization of these so far nonminimizable
automaton parts. Moreover, the newly investigated method, which only uses solver information and
state merging, can minimize automata similarly and with a transition density up to 2.5 (from each
state lead approximately 2.5 transition edges) faster than a tool RABIT, which uses state merging
and transition pruning.
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1. Introduction

Nondeterministic finite automata (NFA) were investi-
gated by Michael Rabin and Dana Scott [1]. In com-
parison with deterministic finite automata (DFA), NFA
can make more than one transition after receiving the
letter. This feature allows NFA to represent the lan-
guage with fewer states and transitions than its deter-
ministic variant. However, there are two sides to every
story, the NFA is much harder to minimize. Nonde-

terministic finite automata are often used for a repre-
sentation of regular languages, in data validation, web
searching engines, pattern recognition, in network traf-
fic monitoring, even genetic (matching of the sequence
of nucleotide acids on DNA) [2], and so on.

An example of NFA usage is a representation of
the regular expression for pattern matching in network
traffic. Due to an increasing amount of data transmit-
ted over the network and so increasing speed, it is
necessary to improve the data scanning speed. Stan-
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dard software solutions that can detect data fragments
can not be used in high-speed networks. For the speed
over 100 Gbps, it is required to implement a hardware
analyzer [3]. To save space, resources, and cost of
manufactured components, it is advisable to minimize
the original automaton. Another big usage of automata
minimization is formal verification, which uses lan-
guage inclusion testing. The smaller the automaton is,
the faster calculation is.

Nowadays, many efficient minimization techniques
exist. The oldest method, state merging [4], investi-
gated by Lucian Ille and Cheng Yu, merges two lan-
guage equivalent states. Other successful procedures
in the field of minimization are transition pruning
and saturation published by Lorenzo Clemente and
Richard Mayr in [5]. They said that the transition can
be pruned if the better transition already exists (a state
with stronger or equal language exists). On the con-
trary, saturation adds new already existing transitions.
Despite the high efficiency of these methods, they are
not omnipotent. They can still leave potentially mini-
mizable automata subgraphs. These fragments consist
of a set of states, where the whole language of some
state is piecewise covered by other states. Each state
can have a unique language, so language inclusion,
which is necessary for minimization, does not exist.

The paper describes a method for minimizing this
so far unsolvable automata subgraphs. The method
works with sets of states with common successors or
ancestors. All states from a set are substituted by states
with the maximal one incoming and outcoming transi-
tion, then SAT solver Z31 is used in merging for max-
imizing the number of merged states. In comparison
to an existing tool RABIT2, which uses state merging
and transition pruning, the solver gives a strong and
on automata with a transition density up to 2.5 faster
approximation of RABIT results.

2. Theoretical background
This chapter is dedicated to the theoretical background
of nondeterministic finite automata. First, the NFA
will be defined and then the related terms such as con-
figuration, transition (taken from [6]), and language of
the automaton and of the state.

2.1 Nondeterministic finite automaton
A nondeterministic finite automaton is a 5-tuple M =
(Q,Σ,δ , I,F), where:

1 Z3 solver is available at https://github.com/
Z3Prover/z3.

2 RABIT is available at http://languageinclusion.
org/doku.php?id=tools.

• Q is a finite set of states,
• Σ is an alphabet,
• δ ⊆ Q×Σ×Q is a transition relation,
• I ⊆ Q is a finite set of initial states, and
• F ⊆ Q is a finite set of final states.

The transition relation δ specifies a set of transition
rules R. For the rule r : q ∈ δ (p,a), where q, p ∈ Q
and a ∈ Σ we will use the notation pa→ q.

The automaton M = (Q,Σ,δ , I,F) will be used for
the future definitions and examples.

2.2 Configuration
The configuration of NFA is a string χ ∈ QΣ∗. The
automaton configuration displays an information about
the current state and the remaining string at the input.
For example, if the automaton M is in the state q and
the string ab remains at the input, then the configura-
tion is qab.

2.3 Transition
Let paw and qw be two configurations over an automa-
ton M, where p and q ∈ Q, a ∈ Σ, and w ∈ Σ∗. Let
r : pa→ q ∈ R. Then M can make a transition from
qaw to qw, written as paw ` qw. If an automaton
makes n transitions from χ to χn for some n≥ 1, then
we write χ `+ χn. If n≥ 0, then we write χ `∗ χn.

2.4 Languages
The accepting language of an automaton M is L(M) =
{w | w ∈ Σ∗, q0w `∗ f , q0 ∈ I, f ∈ F}. It is a set of
strings accepted by an automaton.

The backward language of a state consists of strings
over the automaton alphabet, for which exists a se-
quence of transitions (route) from an initial state to an
examined state. The backward language of a state q is←−
L (q) = {wl | wl ∈ Σ∗, q0wl `∗ q, q0 ∈ I}.

The forward language of a state is a set of strings,
for which exists a sequence of transitions from the
actual state to the final state. The forward language
of a state q ∈ Q is defined as

−→
L (q) = {wr | wr ∈

Σ∗, qwr `∗ f , f ∈ F}.

3. Existing minimization techniques
This chapter contains a description of all methods
(state merging, transition pruning, and saturation) used
by a tool RABIT, with which the investigated method
using the solver is compared. The proofs of transition
pruning are shown on Büchi word automata (NBA) in
[5, p.16–20].

Calculation of a language inclusion used in this
chapter is often approximated by a faster calculation of
a simulation relation [7]. A simulation on automaton
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M is a relation � ⊆ Q×Q such that p � r only if
p ∈ F =⇒ r ∈ F and for every transition pa→ p′,
there exists a transiton ra→ r′, such that p′ � r′.

3.1 State merging
The most well-known minimization approach for non-
deterministic finite automata is state merging. Two
states p and q ∈ Q can be merged only if at least one
of the following conditions [8] is met:

•
←−
L (p)⊆←−L (q)∧←−L (q)⊆←−L (p),

•
−→
L (p)⊆−→L (q)∧−→L (q)⊆−→L (p), or

•
←−
L (p)⊆←−L (q)∧−→L (p)⊆−→L (q).

3.2 Transition pruning
The basic idea of transition pruning is the existence
of a better transition (stronger language), which can
overtake the function of a deleting transition. A tran-
sition ra→ p can be pruned if one of the following
conditions is met:

• ∃ra→ q∧−→L (p)⊆−→L (q)
• ∃qa→ p∧←−L (r)⊆←−L (q), or
• ∃r′a→ p′∧←−L (r)⊆←−L (r′)∧−→L (p)⊆−→L (p′).

3.3 Saturation
The saturation adds a new transition to the automaton
without changing language. It is an analogy of transi-
tion pruning. The transition pa→ r can be added into
an automaton only if one of the following conditions
is met:

• ∃qa→ r∧←−L (p)⊆←−L (q) or
• ∃ pa→ q∧−→L (r)⊆−→L (q).

4. Minimization using SAT solver Z3
This chapter describes the main approaches used in
the minimization of nondeterministic finite automata
by SAT solver Z3. The algorithm minimizes an au-
tomaton by parts, each set of states with a common
successor or ancestor (family) is multiplied, and then
the optimal merge based on the information from SAT
solver is processed. The whole minimization algorithm
is shown at the end of the chapter.

4.1 Family of states
A family is a set of states with a common ancestor
or common successor and a nondeterministic transi-
tion. Two states p and q belong to the same family if
there exists a common ancestor s ∈ Q of the states and
a transition rules sa→ p and sa→ q, where a∈ Σ. The
states p and q are also a family if there exists a com-
mon successor r ∈ Q of these states and such a letter

b ∈ Σ, for which exist the transition rules pb→ r and
qb→ r.

For getting bigger families, all sets of families with
a common state are joined. The bigger the family is,
the more optimal the solution the solver returns.
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Figure 1. The figure shows two families of states with
a nondeterministic transition. The first with a common
ancestor s and a letter a consists of the states q2 and q3.
The second with a common successor f1 and a letter c
consists of the states q1 and q2. After joining families
with a common state we get a big family with states
q1, q2, and q3.

4.2 States multiplication
For getting out of a local automaton minimum, it is
necessary to multiply each state of a family.

Let R be a set of transition rules, the state s ∈ Q
will be multiplied, transin(s) = {ra |ra→ s ∈ R, r 6=
s, a ∈ Σ} be a set of ancestors of s in a combina-
tion with a transition letter, transout(s) = {qb |sb→
q ∈ R, q 6= s, b ∈ Σ} be a set of successors of s in
a combination with a transition letter, and Σsel f (s) =
{a |s ∈ δ (s,a), a ∈ Σ} be a self-loop alphabet of the
states s. Then ∀ rasb ∈ transin(s)× transout(s) transi-
tions ra→ si and sib→ q and ∀ c∈ Σsel f (s) transitions
sic→ si, for i = 0 . . .n, will be created. If the original
state s is a final or initial state, then all new states si,
for i = 0 . . .n, will be initial or final too. The original
state s is removed after multiplication. Multiplication
example is show in the figure 2.

4.3 SAT Solver problem coding
Information obtained from a solver will help to merge
the maximum of states. There could be a state p which
is in backward language equivalency with a state q and
in forward language equivalency with the state r, and
so on. None of the states merged by backward lan-
guage equivalency can be then merged based on for-
ward language equivalency, and vice versa. The mil-
lion dollar question is: Which group of states merge to
get the most optimal solution? Let the solver decide.

The sets of backward and forward language equiva-
lent states are the main information for coding a solver
task. Let the set of backward equivalent states be



Beq = {(q1,q2),(q1,q3)} and the set of forward equiv-
alent states be Feq = {(q1,q4)}.
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Figure 2. Multiplication of a state p to states p1 and
p2 and state r to state r1.

The solver variables will be the states used in back-
ward equivalency (with prefix B) and the states used in
forward equivalency (with a prefix F). Therefore, the
variables are {Bq1,Bq2,Bq3,Fq1,Fq4}.

For each state s used in the forward and backward
language equivalency, the rule Bs =⇒ ¬Fs will be
created. That means that the state s can not be merged
with some state in backward language equivalency and
then with other state in forward language equivalency.
In this example, the rule is Bq1 =⇒ ¬Fq1.

The information about mergeable pairs is coded
by a logical and between states, because a pair of
states can be merged only if both states allow this
merge. Backward equivalent states (q1, q2) will be
coded as Bq1 ∧Bq2. All pairs coded in this way are
interconnected by a logical or, because not all pairs
need to be merged. Z3 solver is forced to maximize
the number of these pairs evaluated as true [9].

After all, the coded problem will look like:
(
(Bq1∧

Bq2)∨ (Bq1∧Bq3)∨ (Fq1∧Fq4)
)
∧Bq1 =⇒ ¬Fq1.

In this case, the solver will set as a true variables
Bq1, Bq2, and Bq3. Only pairs of backward or forward
language equivalencies, which have both states truly
evaluated by the solver result, will be merged. This
means that only the pairs {(q1,q2),(q1,q3)} of back-
ward equivalence will be merged. After the joining of
all pairs with a common state, it can be seen that all
states q1, q2, and q3 will be merged into one.

4.4 Approximation of language quivalence
The language equivalency calculation in a minimiza-
tion using SAT solver is very hard because the mini-
mization algorithm multiplies a family to many states
(even hundreds of states). The calculation of the simu-

lation relation is slow too. The multiplication is done
many times in a minimization process and families are
getting bigger and bigger. It is necessary to calculate
only a strong approximation of language equivalen-
cies (some equivalency might not be detected). The
approximation approach has a specified distance, on
which the language equivalency of two states must
be confirmed, otherwise the states are not equivalent.
The state equivalence checking algorithm with defined
distance is an adaptation of an automata equivalence
checking algorithm [10].

The algorithm for approximation of a forward lan-
guage equivalence of states p and q at a distance 10 is
shown below. The algorithm returns True if the states
are forward equivalent, otherwise False. The distance
10 is used in the experiments, but can be increased for
better approximation, or decreased for faster approxi-
mation.
maxDistance = 10
visited = set()
closed = set()
todo = set((q,r))
distanceCnt = 0
while todo:

(X,Y) = todo.pop()
if (X,Y) not in closed:

visited += X.union(Y)
if (X,Y) is bad pair:
return False

for a in Σ:
if distanceCnt >= maxDistance:

if δ(X,a).union(δ(Y,A))
.difference(visited):

return False
todo += (δ(X,a),δ(Y,a))

closed += (X,Y)
distanceCnt += 1

return True

The pair (X ,Y ) is bad if one of the sets is empty,
but the other is not, or if the state of X or Y is final
whereas the other is not. The approximation of a back-
ward language equivalence is defined similarly.

4.5 Minimization algorithm using SAT solver
With early defined methods for the minimization sub-
problems, the main algorithm can be described. Let
minimize NFA automaton M = (Q, Σ, δ , I, F).
closedFamilies = set()
while True:
families = getFamilies(M)
families -= closedFamilies
if families.empty():

break
for family in families:

family.multiplyStates()
while family.existEquivalentPair():
family.minimizeBySolver()

closedFamilies += family



5. Experiment results
The efficiency of the investigated approach is com-
pared with a tool RABIT. The tests have been per-
formed on 3730 automata, from an abstract regular
model checking [11], with a total of 63538 states. Au-
tomata were modified to have one initial and maximal
two final states (one can be final as well as initial). The
size of each automaton is up to 400 states. The average
transition density of automata is 1.3 (from each state
leads approximately 1.3 transitions). The bigger the
transition density is, the slower the solver minimization
is. First, the solver is compared with RABIT, which
uses state merging and transition pruning. Then the
solver is used as a supplement of RABIT after running
a merge, transition pruning, and saturation, which is
the best-known combination. RABIT uses lookahead
simulation for an approximation of language relations.
Lookahead is set to 1 for all experiments. Bigger looka-
head did not give better minimization results on the
tested automata, only slower down the RABIT.

5.1 Solver vs RABIT
The new minimization approach using solver infor-
mation for better state merging minimizes the input
automata to a total of 59421 states. The tool RABIT us-
ing state merging and transition pruning minimizes the
input automata to a total of 58734 states. This means
that the minimization using the solver approximated
the RABIT result with an accuracy of 98.84%. The
comparison of the results of minimization methods is
in the figure 3.
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Figure 3. The graph compares output automata size
(states count) of a solver based approach and a tool
RABIT, which uses state merging and transition prun-
ing. It can be seen, that solver strongly (on 98.84%)
approximates RABIT solutions.

Another engaging part of the comparison is the
minimization duration. The RABIT, using state merg-
ing and transition pruning minimizes 3730 automata
in 317.830 s. On the contrary, the solver did approxi-
mately the same minimization in only 42.340 s. That
is 13.32% of the time consumed by RABIT. The solver
minimization is solver on automata with high transi-
tion density. The comparison is in the figure 4.
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Figure 4. The comperison of time consumed by a tool
RABIT and solver minimization approach from a fig-
ure 3. Solver is much faster (7.5 times) than RABIT.

5.2 Solver as RABIT’s supplement
The solver with merge can be used alone or as a supple-
ment of a RABIT. The solver with merge is processed
over a RABIT best minimization. The new reduced
automaton is a little more minimal than the RABIT
result. The difference between the minimized states
(the difference between a number of states of the input
and output automaton) of RABIT itself and its version
enriched by the solver is the main measurement. The
total input number of minimized states is the same as
in the previous example (63538). RABIT itself min-
imizes the automata by 5322 states. The extended
version of the algorithm using RABIT and solver min-
imizes the automata by 5356 states. That is, about
0.63% minimized states more than only by using RA-
BIT, which uses the strongest minimization algorithms
known to mankind.

6. Conclusions
The minimization of nondeterministic finite automata
is a fundamental problem in computer science. The
main usages of NFAs are regular expression represen-
tation and formal verification. A formal verification
works widely with language inclusion testing. The



smaller an automaton is, the faster inclusion is calcu-
lated.

The paper described new methods for finding a po-
tentially minimizable subgraph of an automaton, multi-
plication of the states from these fragments for getting
from a local automaton minimum, and for using in-
formation from SAT solver Z3 for a more optimal
state (re)merging. The solver approach strongly (with
98.84% accuracy) and 7.5 times faster approximates
the minimization done by RABIT, using merge and
transition pruning. Moreover, the solver information
can improve the already effective result of RABIT
minimization, using merge, transition pruning, and
saturation, by 0.63%.

7. Future work
The algorithm of an automaton minimization based on
solver information, could be done faster with the usage
of better solver problem coding.

As has been already mentioned, the minimization
using a solver works slower for automata with a high
transition density, such as 3 and more. The method
could be improved to work better for automata with
dense transitions.

Due to a high approximation of RABIT merge and
pruning results, the solver minimization could replace
the merging and transition pruning phase in standard
minimization algorithms.
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Holı́k, Tayssir Touili, and Tomáš Vojnar.
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