
http://excel.fit.vutbr.cz

Advanced Static Analysis of Atomicity in
Concurrent Programs through Facebook Infer
Dominik Harmim*

Atomicity	Violations
Java	or	C/C++	Code

Abstract
Atomer is a static analyser based on the idea that if some sequences of functions of a multi-
threaded program are executed under locks in some runs, likely, they are always intended to
execute atomically. Atomer thus strives to look for such sequences and then detects for which of
them the atomicity may be broken in some other program runs. The first version of Atomer was
proposed within the BSc thesis of the author of this paper and implemented as a plugin of the
Facebook Infer framework. In this paper, a new and significantly improved version of Atomer is
proposed. The improvements aim at both increasing scalability as well as precision. Moreover,
support for several initially not supported programming features has been added (including, e.g.,
the possibility of analysing C++ and Java programs or support for re-entrant locks or lock guards).
Through a number of experiments (including experiments with real-life code and real-life bugs), it is
shown that the new version of Atomer is indeed much more general, scalable, and precise.

Keywords: Facebook Infer — Static Analysis — Abstract Interpretation — Atomicity Violation —
Contracts for Concurrency — Concurrent Programs — Program Analysis — Atomicity — Atomer

Supplementary Material: Atomer Repository — Atomer Wiki — Facebook Infer Repository

*xharmi00@stud.fit.vutbr.cz, Faculty of Information Technology, Brno University of Technology

1. Introduction
Bugs have been present in computer programs ever
since the inception of the programming discipline. Un-
fortunately, they are often hidden in unexpected places,
and they can lead to unexpected behaviour, which may
cause significant damage. Nowadays, developers have
many possibilities of catching bugs in the early de-
velopment process. Dynamic analysers or tools for
automated testing are often used, and they are satisfact-
ory in many cases. Nevertheless, they can still leave
too many bugs undetected because they can analyse
only particular program flows dependent on the input
data. An alternative solution is static analysis (despite
it, of course, suffers from some problems too — such
as the possibility of reporting many false alarms1).

1So-called false alarms (also false positives) are incorrectly
reported errors, i.e., actually, they are not errors.

Quite some tools for static analysis were implemented,
e.g., Coverity or CodeSonar. However, they are often
proprietary and difficult to openly evaluate and extend.

Recently, Facebook introduced Facebook Infer: an
open-source tool for creating highly scalable, compos-
itional, incremental, and interprocedural static ana-
lysers. Facebook Infer has grown considerably, but
it is still under active development. It is employed
every day not only in Facebook itself but also in other
companies, such as Spotify, Uber, Mozilla, or Amazon.
Currently, Facebook Infer provides several analysers
that check for various types of bugs, such as buffer
overflows, data races and some forms of deadlocks
and starvation, null-dereferencing, or memory leaks.
However, most importantly, Facebook Infer is a frame-
work for building new analysers quickly and easily.
Unfortunately, the current version of Facebook Infer

http://excel.fit.vutbr.cz
https://github.com/harmim/infer
https://github.com/harmim/infer/wiki
https://github.com/facebook/infer
mailto:xharmi00@stud.fit.vutbr.cz

still lacks better support for concurrency bugs. While
it provides a reasonably advanced data race analyser, it
is limited to Java and C++ programs only and fails for
C programs, which use a lower-level lock manipula-
tion. Moreover, the only available checker of atomicity
of call sequences is the first version of Atomer [1]
proposed in the bachelor’s thesis of the author.

At the same time, in concurrent programs, there
are often atomicity requirements for the execution of
specific sequences of instructions. Violating these re-
quirements may cause many kinds of problems, such as
unexpected behaviour, exceptions, segmentation faults,
or other failures. Atomicity violations are usually not
verified by compilers, unlike syntactic or some sorts of
semantic rules. Moreover, atomicity requirements, in
most cases, are not even documented at all. Therefore,
in the end, programmers themselves must abide by
these requirements and usually lack any tool support.
Furthermore, in general, it is difficult to avoid errors
in atomicity-dependent programs, especially in large
projects, and even more laborious and time-consuming
is finding and fixing them. The paper [2] discusses
the importance of atomicity-related bugs, and it also
shows some bugs in real-world programs. Unfortu-
nately, tool support for automatically discovering such
kinds of errors is currently minimal.

As already mentioned, within the author’s bach-
elor’s thesis [1], Atomer2 was proposed — a static ana-
lyser for finding some forms of atomicity violations
implemented as a Facebook Infer’s module. In par-
ticular, the stress is put on the atomic execution of
sequences of function calls, which is often required,
e.g., when using specific library calls. For example,
assume the function from Listing 1 that replaces item a
in an array by item b. It contains atomicity violation —
the index obtained may be outdated when set is ex-
ecuted, i.e., index of and set should be executed
atomically. The analysis is based on the assumption
that sequences of function calls executed atomically
once should probably be executed always atomically.
Hence, the checker naturally works with sequences.
In fact, the idea of checking the atomicity of certain
sequences of function calls is inspired by the work
of contracts for concurrency [2]. In the terminology
of [2], the atomicity of specific sequences of calls is
the most straightforward (yet very useful in practice)
kind of contracts for concurrency. However, while the
idea of using sequences in the given context is indeed
natural and rather exact, it quite severely limits the
scalability of the analysis (indeed, even with a few

2The implementation of Atomer is available at GitHub. The
link can be found among the supplementary materials of this paper.

functions, there can appear numerous different orders
in which they can be called). Moreover, the imple-
mentation of the first version of Atomer targets mainly
C programs using PThread locks. Consequently, there
was no support for other languages and their locking
mechanisms in the first version of Atomer.

1 void replace(int a, int b) {
2 int i = array.index_of(a);
3 if (i >= 0) array.set(i, b); }

Listing 1. Example of atomicity violation

Within this work, Atomer has been significantly
improved and extended. In particular, to improve
scalability, working with sequences of function calls
was approximated by working with sets of function
calls. Furthermore, several new features were imple-
mented: support for C++ and Java, including various
advanced kinds of locks these languages offer (such
as re-entrant locks or lock guards); or a more precise
way of distinguishing between different lock instances.
Moreover, the analysis has been parameterised by
function names to concentrate on during the analysis
and limits of the number of functions in critical sec-
tions. These parameters aim to reduce the number of
false alarms. Their proposal is based on the author’s
analysis of false alarms produced by the first Atomer’s
version. Lastly, new experiments were performed to
test capabilities of the new version of Atomer.

The development of the original Atomer started
under the H2020 ECSEL projects AQUAS and Arrow-
head Tools. The development of its new version is
supported by the H2020 ECSEL project VALU3S. The
development has been discussed with the developers
of Facebook Infer too. Parts of the paper concerning
the Facebook Infer framework and the basic version of
Atomer are partially taken from the thesis [1].

The rest of the article is organised as follows. In
Section 2, there is introduced the Facebook Infer frame-
work. The original version of Atomer and related work
are described in Section 3. Subsequently, Section 4
presents all the proposed extensions and improvements.
The implementation of these extensions, together with
the experimental evaluation of the new Atomer’s fea-
tures and other experiments performed within this
work, are discussed in Section 5. Finally, the paper is
concluded in Section 6.

2. Facebook Infer

This section describes the principles and features of
Facebook Infer. The description is based on informa-

tion provided at the Facebook Infer’s website3. Parts
of this section are taken from [1].

Facebook Infer is an open-source4 static analysis
framework, which can discover various kinds of soft-
ware bugs and which stress the scalability of the ana-
lysis. For an explanation of the general meaning of
static analysis, see, e.g., [3, 4, 5]. A more detailed
explanation of Facebook Infer architecture is given
in Section 2.2. Facebook Infer is implemented in
OCaml — a functional programming language, also
supporting imperative and object-oriented paradigms.
Infer has initially been a rather specialised tool fo-
cused on sound verification of the absence of memory
safety violations, which was first published in the well-
known paper [6]. Once Facebook has purchased it, its
scope significantly widened and abandoned the focus
on sound analysis only.

Facebook Infer can analyse programs written in
the following languages: C, C++, Java, Obj-C, C#.
Moreover, it is possible to extend Facebook Infer’s
frontend for supporting other languages. Currently,
Infer contains many analyses focusing on various kinds
of bugs, e.g., Inferbo (buffer overruns); RacerD (data
races) [7]; and other analyses that check for buffer
overflows, some forms of deadlocks and starvation,
null-dereferencing, memory leaks, resource leaks, etc.

2.1 Abstract Interpretation in Facebook Infer
Facebook Infer is a general framework for static ana-
lysis of programs, and it is based on abstract inter-
pretation, which is explained in [8, 3, 4, 5]. Despite
the original approach taken from [6], Facebook Infer
aims to find bugs rather than perform formal verific-
ation. It can be used to quickly develop new sorts
of compositional and incremental analysers (both in-
traprocedural and interprocedural [4]) based on the
concept of function summaries. In general, a sum-
mary represents preconditions and postconditions of
a function [9]. However, in practice, a summary is
a custom data structure that may be used for storing
any information resulting from the analysis of par-
ticular functions. Facebook Infer generally does not
compute the summaries during the analysis along the
Control Flow Graph (CFG [10]) as it is done in clas-
sical analyses based on the concepts from [11, 12].
Instead, Facebook Infer performs the analysis of a pro-
gram function-by-function along the call tree, starting
from its leaves. Therefore, a function is analysed, and
a summary is computed without knowledge of the call
context. Then, the summary of a function is used at all

3Facebook Infer’s website: https://fbinfer.com.
4A link to the Facebook Infer’s open-source repository is in

the supplementary materials of the paper.

of its call sites. Since the summaries do not differ for
different contexts, the analysis becomes more scalable,
but it can lead to a loss of accuracy.

In order to create a new intraprocedural analyser
in Facebook Infer, it is needed to define the following
(the listed items are described in more detail in [1]):
(i) The abstract domain QQQ, i.e., the type of abstract
states; (ii) The ordering operator v, i.e., an ordering
of abstract states; (iii) The join operator t, i.e., the
way of joining two abstract states; (iv) The widening
operator O, i.e., the way how to enforce termination of
the computation; (v) And the transfer functions τ , i.e.,
transformers that take an abstract state as an input and
produce an abstract state as an output. Further, to cre-
ate an interprocedural analyser, it is required to define
additionally: (i) The type of function summaries χ .
(ii) The logic for using summaries in transfer func-
tions and the logic for transforming an intraprocedural
abstract state to a summary.

An important Infer’s feature, which improves its
scalability, is the incrementality of the analysis. It
allows one to analyse separate code changes only, in-
stead of analysing the whole codebase. It is more suit-
able for extensive and variable projects where ordinary
analysis is not feasible. The incrementality is based
on reusing summaries of functions for which there is
no change in them neither in the functions transitively
invoked from them, as shown in Example 2.1.

2.2 Architecture of the Infer AI
The architecture of the abstract interpretation frame-
work of Infer (Infer AI) may be split into three major
parts: the frontend, an analysis scheduler (and the
results database), and a set of analyser plugins.

The frontend compiles input programs into the
Smallfoot Intermediate Language (SIL) and represents
them as a CFG. There is a separate CFG representation
for each analysed function. Nodes of this CFG are
formed as SIL instructions (the individual instructions
are outlined in [1]). The frontend allows one to propose
language-independent analyses (to a certain extent)
because it supports input programs to be written in
multiple languages.

The next part of the architecture is the scheduler,
which defines the order of the analysis of single func-
tions according to the appropriate call graph5. The
scheduler also checks if it is possible to simultaneously
analyse some functions, allowing Facebook Infer to
run the analysis in parallel.

5A call graph is a directed graph describing call dependencies
among functions.

https://fbinfer.com

Example 2.1.

F1

F3

F2

F4

F5 F6

FMAIN

Figure 1. A call graph
for an illustration of
Facebook Infer’s ana-
lysis process [1]

For demonstrating the order
of the analysis in Facebook
Infer and its incrementality,
assume the call graph given
in Figure 1. At first, leaf
functions F5 and F6 are ana-
lysed. Further, the analysis
goes on towards the root
of the call graph — FMAIN,
while considering the de-
pendencies denoted by the
edges. This order ensures
that a summary is available
once a nested function call
is abstractly interpreted within the analysis. When
there is a subsequent code change, only directly
changed functions and all the functions up the call
path are re-analysed. For instance, if there is a change
of source code of function F4, Facebook Infer triggers
reanalysis of functions F4, F2, and FMAIN only.

The last part of the architecture consists of ana-
lyser plugins. Each plugin performs some analysis by
interpreting SIL instructions. The result of the ana-
lysis of each function (function summary) is stored
in the results database. The interpretation of SIL in-
structions (commands) is made using the abstract inter-
preter (also called the control interpreter) and transfer
functions (also called the command interpreter). The
transfer functions take a previously generated abstract
state of an analysed function as an input, and by apply-
ing the interpreting command, produce a new abstract
state. The abstract interpreter interprets the command
in an abstract domain according to the CFG.

3. Atomer: Atomicity Violations Detector

This section introduces the principles of the basic ver-
sion of the Atomer static analyser for finding some
forms of atomicity violations proposed in the bach-
elor’s thesis [1] of the author of this paper. Therefore,
naturally, the following description is based on the
mentioned thesis.

3.1 Related Work
Atomer is slightly inspired by ideas from [2]. In that
paper, there is described a proposal and implementa-
tion of a static approach for finding atomicity viola-
tions of sequences of function calls, which is based on
grammars and parsing trees. Note that in the paper [2],
there is also described and implemented a dynamic
approach for the validation. The authors of the paper
implemented a stand-alone prototype static analyser
called Gluon for analysing programs written in Java.

To the best author’s knowledge, Gluon is the only
static analyser that tries to go in a similar direction
as Atomer does. Gluon led to some promising experi-
mental results, but the scalability of the tool was still
limited. Moreover, Gluon is no more developed, and
it is not easy to use. Despite all author’s efforts, it
was not put into operation. Above that, the authors
themselves note that the code of Gluon is very ad hoc,
and many things are hard-coded in it. These facts, in
fact, inspired the decision that eventually led to the im-
plementation of Atomer, namely, to get inspired by the
ideas from [2], but reimplement them in Facebook In-
fer, redesigning it following the principles of Facebook
Infer, which should make the resulting tool more scal-
able. In the end, however, due to adapting the analysis
to the context of Facebook Infer, the implementation
of Atomer’s analysis is significantly different from [2].
Furthermore, unlike Gluon, the new version of Atomer
is capable of analysing a much wider range of pro-
grams because it also supports other languages than
Java, and it supports more advanced locking mech-
anisms. On the other hand, Gluon also implements
extended contracts for concurrency [2] that consider
data flow within functions and contextual information.
These should improve the precision of the analysis. It
is author’s future work to implement these extended
contracts in Atomer as well.

3.2 Analysis and Design

Atomer concentrates on checking the atomicity of the
execution of certain sequences of function calls, which
is often required for concurrent programs’ correct be-
haviour. In principle, Atomer is based on the assump-
tion that sequences of function calls executed atomic-
ally once should probably be executed always atom-
ically. Atomer can both automatically derive those
sequences that are sometimes executed atomically as
well as subsequently check whether they are always
executed atomically. Both of these steps are done stat-
ically. The proposed analysis is thus divided into two
parts (phases of the analysis that are in-depth described
in the sections below):
Phase 1: Detection of (likely) atomic sequences.
Phase 2: Detection of atomicity violations (violations

of the atomic sequences).

This section provides a high-level view of the ab-
stract interpretation underlying Atomer. The abstract
states s∈QQQ of both phases of the analysis are proposed
as sets. So, in fact, the ordering operator v is imple-
mented using testing for a subset (i.e., sv s′⇔ s⊆ s′,
where s,s′ ∈ QQQ), the join operator t is implemented
as the set union (i.e., st s′⇔ s∪ s′), and the widening

operator O is implemented using the join operator (i.e.,
sOs′⇔ st s′) since the domains are finite.

3.2.1 Phase 1: Detection of Atomic Sequences
Phase 1 of Atomer detects sequences of functions that
should be executed atomically. It is based on looking
for sequences executed atomically, in particular, under
some lock, on some path through a program.

The detection of such sequences is based on ana-
lysing all paths through the CFG of a function and gen-
erating all pairs (A,B) ∈ Σ∗×Σ∗ (where Σ is the set of
functions of a given program) of reduced sequences6

of function calls for each path such that: A is a re-
duced sequence of function calls that appear between
the beginning of the function being analysed and the
first lock; between an unlock and a subsequent lock; or
between an unlock and the end of the function being
analysed. B is a reduced sequence of function calls
that follow the calls from A and that appear between
a lock and an unlock (or between a lock and the end of
the function being analysed). Thus, the abstract states
of the analysis are elements of the set 22Σ∗×Σ∗

because
there is a set of the (A,B) pairs for each program path.

A summary χf ∈ 2Σ∗ ×Σ∗ of a function f is then
a pair χf = (BBB,AB), where:

• BBB is a set constructed such that it contains all
the B sequences that appear on program paths
through f, i.e., those computed within the (A,B)
pairs at the exit of f. In other words, this com-
ponent of the summary is a set of sequences of
atomic function calls appearing in f.

• AB is a concatenation of all the A and B se-
quences with removed duplicates of function
calls. In particular, assume that the following
set of (A,B) pairs is computed at the exit of f:
{(A1,B1),(A2,B2), . . . ,(An,Bn)}, then the result
is the sequence A1 ·B1 ·A2 ·B2 · . . . ·An ·Bn with
removed duplicates. Intuitively, in this compon-
ent of the summary, the analysis gathers occur-
rences of all called functions within the ana-
lysed function. AB are recorded to facilitate the
derivation of atomic call sequences that show
up higher in the call hierarchy. Indeed, while
locks/unlocks can appear in such a higher-level
function, parts of the call sequences can appear
lower in the call hierarchy.

Example 3.1. For instance, the analysis of the func-
tion f from Listing 2 produces the following sequences:

A︷ ︸︸ ︷
x ·x ·y

B︷ ︸︸ ︷
[a ·b ·b]

6A reduced sequence denotes a sequence in which the first
appearance of each function is recorded only.

The strikethrough of the functions x and b denotes
removing already recorded function calls in the A
and B sequences to get the reduced form. For the
above, the abstract state at the end of the abstract in-
terpretation of the function f is sf = {{(x ·y,a ·b)}}.
The derived summary χf for the function f is χf =
({a ·b},x ·y ·a ·b).

1 void f() {
2 x(); x(); y();
3 lock(&L); // a.b
4 a(); b(); b();
5 unlock(&L); }

Listing 2. A code snippet used for an illustration of the
derivation of sequences of functions called atomically

The derived sequences of calls assumed to execute
atomically — the BBB sequences — from the summaries
of all analysed functions are stored into a file used
during Phase 2, which is described below.

3.2.2 Phase 2: Detection of Atomicity Violations
In the second phase of the analysis, i.e., when detect-
ing violations of the atomic sequences obtained from
Phase 1, the analysis looks for pairs of functions that
should be called atomically (or just for single func-
tions if there is only one function call in an atomic
sequence) and that are not executed atomically (i.e.,
under a lock) on some path through the CFG. The
pairs of function calls to be checked for atomicity
are obtained as follows: For each function f with
a summary χf = (BBB,AB) in a given program, where
BBB = {B1,B2, . . . ,Bn}, the analysis considers every pair
(x,y)∈ Σ×Σ of functions that appear as a substring in
some of the Bi sequences, i.e., Bi =w ·x ·y ·w′ for some
sequences w,w′. Note that x could be ε (an empty se-
quence) if some Bi consists of a single function. All
these “atomic pairs” are put into the set Ω ∈ 2Σ×Σ.

An element of this phase’s abstract state is a triple
(x,y,∆) ∈ Σ×Σ× 2Σ×Σ where (x,y) is a pair of the
most recent calls of functions performed on the pro-
gram path being explored, and ∆ is a set of so far de-
tected pairs that violate atomicity. Thus, the abstract
states are elements of the set 2Σ×Σ×2Σ×Σ

. Whenever
a function f is called on some path that led to an ab-
stract state (x,y,∆), a new pair (x′,y′) of the most
recent function calls is created from the previous pair
(x,y) such that (x′,y′) = (y,f). Further, when the cur-
rent program state is not inside an atomic block, the
analysis checks whether the new pair (or just the last
call) violates the atomicity (i.e., (x′,y′) ∈Ω∨ (ε,y′) ∈
Ω). When it does, it is added to the set ∆ of pairs that
violate atomicity.

1 void f() {
2 lock(&L); // a.b.c
3 a(); b(); c();
4 unlock(&L); }
5 void g() {
6 // ATOMICITY VIOLATION: (b, c)
7 x(); b(); c(); y(); }

Listing 3. Example of an atomicity violation

Example 3.2. To demonstrate the detection of an
atomicity violation, assume the functions f and g from
Listing 3. The set of atomic sequences of the func-
tion f with the summary χf = (BBB,AB) is BBB= {a ·b ·c},
thus Ω = {(a,b),(b,c)}. In the function g, an atom-
icity violation is detected because the pair of func-
tions b and c is not called atomically.

The sets of atomicity violations ∆ from individual
functions are the final reported atomicity violations
seen by a user.

4. Proposal of Enhancements for Atomer

The above proposal was implemented in the first ver-
sion of Atomer [1]. The implementation works and
can be used in practice to analyse various kinds of
programs, and it may find real atomicity-related bugs.
Nevertheless, there are still several limitations and
cases where the original version of Atomer would not
work correctly, i.e., cases not addressed during the ori-
ginal proposal. Below, the author proposes solutions
for some of the limitations. The solutions enhance
the analysis’s precision and scalability. Furthermore,
Section 5 provides an overview of the implementation
of a new version of Atomer.

4.1 Approximation of Sequences by Sets
Regarding scalability, the basic version of Atomer can
have problems with more extensive and complex pro-
grams, which can manifest both in its time and memory
consumption. The problems arise primarily due to
working with the sets of (A,B) pairs of sequences of
function calls in abstract states (during Phase 1). It
may be necessary to store many of these sequences,
and they could be very long (due to all different paths
through the CFG of an analysed program). The au-
thor’s idea is to approximate these sets by working
with sets of (A,B) pairs of sets of function calls. Apart
from representing abstract states of the first phase of
the analysis, elements of these pairs do also appear
in the first phase’s summaries, and they are then used
during Phase 2 as well. Thus, it is needed to make
a certain approximation in the summaries and their
subsequent usage too.

In particular, the proposed solution is more scal-
able because the ordering of function calls that appear
in the pairs is not relevant anymore. Therefore, less
memory is required because different sequences of
function calls can map the same set. The analysis is
also faster since there are stored fewer sets of function
calls to work with. On the other hand, the analysis is
less accurate because the new approach causes some
loss of information. In practice, this loss of informa-
tion could eventually lead to false alarms. However,
the number of such false alarms is typically not that
high as this project’s experimental evidence shows.

The detection of sequences of calls to be executed
atomically now generates all (A,B) pairs of sets of
function calls for each path instead of pairs of se-
quences, i.e., (A,B) ∈ 2Σ× 2Σ. The purpose of the
pairs is preserved. So, the abstract states are elements
of the set 222Σ×2Σ

. In all the implemented algorithms
and definitions, it is sufficient to work with: (i) sets 2Σ

of functions, instead of sequences Σ∗ of functions;
(ii) the empty set /0, instead of the empty sequence ε;
(iii) and unions ∪ of sets, instead of the concatena-
tion · of sequences. Consequently, also the form of
summaries χ changes from 2Σ∗×Σ∗ to 22Σ×2Σ.
Example 4.1. For demonstrating the approximation
of the analysis to sets, assume functions f and g from
Listing 4. After the approximation, the produced
abstract states and summaries are as follows: sf =
sg = {{({a,b},{x,y})}}, χf = χg = ({{x,y}},{a,b,
x,y}). This is, they are the same for both functions
because there are the same locked/unlocked function
calls, only the order of calls differs.

1 void f() {
2 a(); b();
3 lock(&L); // x.y -> {x, y}
4 x(); y();
5 unlock(&L); }
6 void g() {
7 b(); a();
8 lock(&L); // y.x -> {x, y}
9 y(); x();

10 unlock(&L); }

Listing 4. A code snippet used to illustrate the
proposed approximation of the first phase of the
analysis in the new version of Atomer by using sets of
function calls

Detection of atomicity violation in Phase 2 then
works almost the same way as before the approxima-
tion. There is only one difference. Before, the analysis
implemented in the second phase looked for violations
of atomic sequences obtained from Phase 1. Now,

atomic sets are obtained from Phase 1; hence, the de-
tection of atomicity violations needs to work with sets
too. The second phase of the analysis now looks for
non-atomic execution of any pair of functions f, g
such that {f,g} is a subset of some set of functions
that were found to be executed atomically.
Example 4.2. For example, assume that Phase 1
analysed a function f, which produced the sum-
mary χ f = (BBB,AB). Assume that the set BBB of sets
of functions that should be called atomically is the
following: BBB = {{a,b,c}}, the analysis now looks
for the following pairs of functions that are not
called atomically (all 2-element variations): Ω =
{(a,b),(a,c),(b,a),(b,c),(c,a),(c,b)}.

4.2 Advanced Manipulation with Locks
The original version of Atomer does not distinguish
different lock instances in a program. Only calls of
locks/unlocks are identified, and the parameters of
these calls (lock objects) are not considered. Thus, if
there are several lock objects used, the analysis does
not work correctly.

In order to consider lock objects, it was proposed
to distinguish between them using Facebook Infer’s
built-in mechanism called access paths [13]. The ana-
lyser does not perform a classic alias analysis, i.e., it
does not perform a precise analysis for saying when
arbitrary pairs of accesses to lock objects may alias
(such an analysis is considered too expensive).

The syntactic access paths represent heap loca-
tions via the paths used to access them, i.e., they have
the form of an expression consisting of a base variable
followed by a sequence of fields. More formally, let
Var be a set of all variables that can occur in a given
program. Let Field be a set of all possible field names
that can be used in the program (e.g., structure fields).
An access path π from the set Π of all access paths
is then defined as follows: π ∈ Π ::= Var×Field∗.
Access paths are already implemented in Facebook
Infer. For instance, the principle of using access paths
is used in an existing analyser in Facebook Infer —
RacerD [7] — for data race detection. In general, no
sufficiently precise alias analysis works composition-
ally and at scale. That is the motivation for using
access paths in Facebook Infer and Atomer.

During the analysis (both phases), each atomic
section is identified by an access path of the lock that
guards the section. Because syntactically identical
access paths are used as the means for distinguishing
atomic sections, some atomicity violations could be
missed (or some false alarms could be reported) due
to distinct access paths that refer to the same memory.
However, the analysis’s precision is still significantly

improved this way while preserving its scalability, and
the stress is anyway put on finding likely violations,
not on being sound.

Another limitation of Atomer in its basic version
is that it does not count with re-entrant locks when
a process can lock the same lock object multiple times
without blocking itself, and then it should unlock the
lock object the same number of times. This approach
is, in fact, widespread, e.g., in Java, where so-called
synchronised blocks are used. These blocks are re-
entrant by default. To consider re-entrant locks in the
analysis, the number of locks of individual lock objects
is tracked in the abstract states of both phases of the
analysis. A lock is unlocked as soon as this number
decreases to 0. Also, an input parameter t ∈ N was
proposed to limit the upper bound up to which the ana-
lysis tracks precisely the number of times a given lock
is locked. When this bound is reached, the widening
operator is used to abstract the number to any value
bigger than the bound. This is to ensure the termina-
tion of the analysis. The idea of this upper bound limit
comes from the approach used in RacerD.

Recall that the detection of sets of calls to be ex-
ecuted atomically is based on generating the (A,B)
pairs. Now, these pairs are to be extended to store ac-
cess paths and the number of locks of lock objects that
guard calls executed atomically, i.e., the B sets. There-
fore, the (A,B) pairs are extended to tuples (A,B,π,
l) ∈ 2Σ×2Σ×Π×N> where π is an access path that
identifies a lock object that locks the atomic section
that contains the calls from B, and l is the number of
locks of the lock identified by π . N> denotes N∪{>},
where > represents a number larger than t. Thus, the

abstract states are elements of the set 222Σ×2Σ×Π×N>
.

Example 4.3. Consider the function f from Listing 5.
There are two lock objects L1 and L2, which are used
simultaneously. Moreover, L2 is locked several times
without unlocking in between. After the extension
described above, the produced summary is the fol-
lowing: χf = ({{b},{a,b,c}},{a,b,c}). Without the
extension, the summary would be as follows: χ ′f =
({{a}},{a,b,c}). That is because only the first lock-
s/unlocks were detected. Other locks inside atomic sec-
tions and other unlocks outside atomic sections were
ignored. Moreover, the abstract state after the execu-
tion of line 6 is as follows: sf6 = {{(/0,{a,b},L1,1),
({a},{b},L2,2)}}.

Dealing with access paths and re-entrant locks
must, of course, be reflected in the second phase of
the analysis as well. For that, while looking for atom-
icity violations of pairs of function calls, from now, the
analysis stores (in addition to pairs of the most recent

1 void f() {
2 lock(&L1); // {a, b, c}
3 a();
4 lock(&L2); lock(&L2);
5 lock(&L2); unlock(&L2); // {b}
6 b();
7 unlock(&L2); unlock(&L2);
8 c();
9 unlock(&L1); }

Listing 5. A code snippet used to illustrate the
advanced manipulation with locks during Phase 1

function calls (x,y) and the set ∆ of pairs that have so
far been identified as violating atomicity) all the most
recent pairs of function calls locked under individual
locks. Hence, the abstract state element gets the form
(x,y,∆,Λ) ∈ Σ×Σ×2Σ×Σ×2Σ×Σ×Π×N> , where Λ is
the set of the most recent function calls with their lock
access paths and the number of locks of lock objects
of these locks. Thus, the abstract states are elements
of the set 2Σ×Σ×2Σ×Σ2Σ×Σ×Π×N>

. The analysis works as
follows. When a function f is called on some path that
led to an abstract state (x,y,∆,Λ), a new pair (x′,y′)
of the most recent function calls is created from the
previous pair (x,y) such that (x′,y′) = (y,f). This
pair is also stored in the locked pairs Λ if there are any
locks currently locked. Further, it is checked whether
the new pair (or just the last call) violates the atom-
icity, and at the same time, the pair is not locked by
any of the stored locks (i.e., ((x′,y′) ∈ Ω∧ (x′,y′) /∈
Λ)∨ ((ε,y′) ∈Ω∧ (ε,y′) /∈ Λ)). When the condition
holds, the pair is added to the set ∆ of pairs that violate
atomicity.
Example 4.4. Consider the function g from Listing 6.
There are two lock objects L1 and L2, which are used
simultaneously. Then assume that the result of the
first phase of the analysis is that the pair (a,b) should
be called atomically, i.e., Ω = {(a,b)}. Before the
extension distinguishing of multiple lock instances,
the analysis would report an atomicity violation for
these functions (line 5). This is because the locks
are not distinguished, and the unlock of L1 (line 4)
would unlock everything. On the other hand, after
the extension, there are not reported any violations
because the pair is still locked using L2. The abstract
state of f after the execution of line 5 looks as follows:
sf5 = {(a,b, /0,{(a,b,L2,1)})}.

Finally, support for so-called lock guard objects
has been proposed. Lock guards are objects associated
with lock objects. One lock guard can be associated
with multiple lock objects, and one lock object can
be associated with multiple lock guards. When a lock

1 void g() {
2 lock(&L1); // {}
3 lock(&L2); // {a, b}
4 unlock(&L1);
5 a(); b();
6 unlock(&L2); }

Listing 6. A code snippet used to illustrate the
advanced manipulation with locks during Phase 2

guard is created, all lock objects associated with it
are locked. When a lock guard is destroyed (usually,
when a scope of variables is left), all lock objects
associated with it are automatically unlocked. Excep-
tionally, under certain circumstances, lock guards can
be locked/unlocked manually. Lock guards are widely
used, especially in C++, but they are used, e.g., in Java
as well. To cope with them, the analysis has been exten-
ded such that they are also identified by access paths.
The association between a lock guard and lock objects
is modelled as a pair (πg,L) ∈Π×2Π, where πg is an
access path that identifies the lock guard and L is a set
of access paths that identify the lock objects associated
with the guard identified by πg. In the abstract states
of both phases of the analysis, associations between
lock guards and lock objects are maintained as a set
that is an element of the set 2Π×2Π

, i.e., there is a set
of associations between lock guards and lock objects.
Subsequent locks/unlocks of lock guards are then inter-
preted as a sequence of locks/unlocks of lock objects
associated with these lock guards.

4.3 Analysis’s Parametrisation
One of the main reasons why Atomer in its first ver-
sion reports false alarms is that, in practice, critical
sections often interleave calls of functions that need
to be executed atomically with common functions that
need not be executed atomically (such as functions for
printing to the standard output, functions for recasting
variables to different types, functions related to iter-
ators, and various other “safe” functions). Often, to
find real atomicity violations, it is sufficient to focus
on specific “critical” functions only.

For example, calls of constructor and destructor
methods of classes do not lead to atomicity violations.
Therefore, these calls can usually be ignored. Un-
fortunately, in general, it is not easy to differentiate
between functions that should be set aside and func-
tions to focus on because this distinction is application-
specific. Therefore, the author decided to rely on a user
to provide this information to the analysis. (Indeed,
providing information of this kind is not so exceptional,
e.g., for developers of libraries. A similar approach
has also been chosen, e.g., in the ANaConDA dynamic

analyser for concurrency issues [14], where a user can
use so-called hierarchical filters to specify functions
that the analysis should not monitor.) For this reason,
the following input parameters of the analysis are pro-
posed: (i) a list of functions that will not be analysed;
(ii) a list of functions that will be analysed (and all
other functions will not be); (iii) a list of functions
whose calls will not be considered; (iv) and a list of
functions whose calls will be considered (and all other
function calls will not be). In other words, there are
black-lists and white-lists of functions to analyse and
function calls to consider. It is possible to combine
these parameters, and they can be enabled for indi-
vidual phases of the analysis. In the below-mentioned
implementation of the approach, these parameters’ val-
ues are read from input text files that contain one func-
tion name per line. Moreover, the implementation
allows a user to specify sets of functions using regular
expressions (in that case, the line must start with the
letter R followed by whitespace).

Another issue often causing false alarms is that
some programs contain “large” critical sections or crit-
ical sections that include function calls with a deep
hierarchy of nested function calls. Both cases can
cause massive and “imprecise” atomic sets that are the
source of false alarms. Indeed, such “large” and/or
“deep” critical sections are likely to contain a number
of calls of functions that are not critical.

To resolve “large” critical sections’ problem, the
author proposes to parametrise the analysis by a para-
meter p ∈ N that limits the maximum length of a crit-
ical section to be taken into account. During its first
phase, the analysis then discards all (A,B) pairs where
|B| > p, i.e., it removes pairs where the number of
functions in the set B (functions called atomically) is
greater than the limit p.

To get to the above proposal of dealing with deeply
nested critical functions, recall that, during the first
phase, when calling an already analysed nested func-
tion, the AB set (i.e., the set of all called functions
within a function) from its summary is used. If there is
a deep hierarchy of nested function calls, the top level
of the hierarchy uses function calls from all lower-level
functions, leading to “large” critical sections. To avoid
this problem, the summary χ = (BBB,AB) ∈ 22Σ × 2Σ

in Phase 1 is redefined as 22Σ × 2N×2Σ

, i.e., AB is no
longer a set of all functions called within an analysed
function. It is a set of pairs where each pair repres-
ents called functions called at a particular level in the
hierarchy of a nested function (0 means the top-level).
For instance, the summary χf = (/0,{(0,{a,b}),(1,
{x,y})}) of a function f means that there were called

functions a, b in f and that there were called func-
tions x, y in functions one level lower in the call tree
(i.e., in functions directly invoked from f). During
the analysis, the summaries are passed among func-
tions in the call hierarchy. Furthermore, the analysis
uses a parameter r ∈ N to limit the number of levels
considered during analysing nested functions.
Example 4.5. Assume functions f, g, h from List-
ing 7. Their summaries for the first phase are as fol-
lows: χh = (/0,{(0,{x,y})}), χg = (/0,{(0,{c,d,h}),
(1,{x,y})}), χf = (/0,{(0,{a,b,g}),(1,{c,d,h}),(2,
{x,y})}). When the value of the parameter r is set
to 1, the summary of the function f changes as follows:
χ ′f = (/0,{(0,{a,b,g}),(1,{c,d,h})}).

1 void h() { x(); y(); }
2 void g() { c(); h(); d(); }
3 void f() { a(); g(); b(); }

Listing 7. A code snippet used to illustrate the
limitation of considered nested functions

5. Implementation and Experiments
The proposed extensions and improvements from Sec-
tion 4 have been implemented in the new version of
Atomer. The implementation can be found among the
supplementary materials of the paper. Besides the ex-
tensions described in the previous section, Atomer was
extended to support analysis of C++ and Java pro-
grams that the first version of Atomer did not support.
As it was already mentioned in Section 2, in general,
Facebook Infer can analyse programs written in C,
C++, Java, Obj-C, and C#. The Facebook Infer’s fron-
tend compiles input programs into the SIL language
and represents them as a CFG. Individual analyses are
then performed on SIL. However, in practice, there are
not negligible differences among the ways programs
from different languages look like in SIL. Thus, in-
dividual non-trivial analysers have to be adapted for
specific languages.

The basic version of Atomer supported only C
language using PThread mutex locks. The new ver-
sion of Atomer was adjusted to support also other
C locks and more complicated mutual exclusion C++
and Java mechanisms. In particular, the following
locking mechanisms are supported in the new version
of Atomer: (i) all C/C++ locks from the pthread.h
library, including, e.g., spinlock; (ii) C++ locks and
lock guards from standard libraries std::mutex and
std::shared mutex; (iii) C++ locks and lock guards
from C++ libraries from Apache Thrift, Boost, and
Facebook Folly; (iv) Java locks from the standard pack-
age java.util.concurrent.locks; (v) and Java

lock guards, i.e., synchronised blocks and methods
using the synchronized keyword.

The implementation of the new version of Atomer
was, at first, tested on suitable programs created for
testing purposes. During testing, various kinds of dif-
ferent lock mechanisms for C/C++/Java were used.
Moreover, the test suite was designed in order to check
all aspects of the newly implemented features. This
way, the correct functioning of the analysis of Atomer’s
new version has been validated (w.r.t. the proposal).

Further, since the new version of Atomer sup-
ports the analysis of Java programs, two real-life ex-
tensive (both ∼250 KLOC) Java programs were ana-
lysed — Apache Cassandra and Tomcat. In [2], there
were reported several atomicity-related bugs in these
programs. It turns out that the reported bugs were
real atomicity violation errors, and they were later
fixed. When Atomer first analysed these programs
(at that time, without most of the extensions presen-
ted in this paper), the bugs were successfully redis-
covered, but quite some false alarms were reported.
However, after all the improvements proposed in this
paper were implemented, the number of false alarms
was significantly reduced. In particular, the support
for re-entrant locks increased the analysis’ precision
a lot because these types of locks appear pretty often
in these programs. Moreover, many “large” atomic
sections in these programs dramatically increase the
number of reported false alarms. Therefore, the para-
meters of the analysis presented in this paper were
used. In particular, the maximum length of critical
sections was limited with the parameter p set to 20,
and the number of levels considered during analys-
ing nested functions was limited with the parameter r
set to 10. Further, also using the parametrisation
of the analysis, several “non-critical” functions were
ignored during the analysis (e.g., String.format,
*.toString, *.toArray, Log.debug, etc.). After
that, when analysing one of the source files of Tom-
cat where a real atomicity violation was reported be-
fore (i.e., StandardContext.java — this file and
the files it depends on, that must have been analysed
too, contain tens of thousands LOC), the number of
reported errors decreased from ∼800 to ∼200. Ob-
viously, most of the previously reported errors were
false alarms.

However, it is still challenging to say which of
these errors are real atomicity violations. Indeed, the
author suspects some of the warnings correspond to
real errors, but so far, the author has not managed
to confirm that. Works on further improvements of
the accuracy of the analyser are currently in progress.

Besides, the analysis results may be used as an input
for dynamic analysis, which can check whether the
atomicity violations are real errors.

The scalability of the analysis has been tested on
a subset of the publicly available benchmark from [15].
It consists of real-life low-level complex concurrent C
programs derived from the Debian GNU/Linux dis-
tribution. The entire benchmark was initially used
for an experimental evaluation of Daniel Kroening’s
static deadlock analyser for C/PThreads implemen-
ted in the CPROVER framework. However, it can
also be used for the evaluation of Atomer’s scalabil-
ity. For the evaluation, 7 programs with deadlocks
and 54 deadlock-free programs (806,431 LOC in total)
were used. The experiments were run in a Docker
container on Windows 10 (WSL 2) with a 3.3 GHz
Intel© Core™ i5-2500K 64-bit processor and 6 GB
RAM running the Debian GNU/Linux 10.9 (Buster)
operating system. Table 1 shows aggregated results
of the evaluation. There are average and total times
of analyses for both phases of the analysis for both
the basic version of Atomer (v1.0.0, i.e., the version
before the approximation with sets presented in this
paper) and the new version (v2.0.0, i.e., the version
after the approximation). Also, there is shown the
number of timeouts of individual analyses where the
timeout was set to 10 min. It is evident that, on av-
erage, the new version of Atomer is about two times
faster. For a closer look, Table 2 provides an over-
view of the analyses times of selected programs from
the benchmark. Above that, there are tgrep and sort
from GNU Core Utilities that also use PThreads. It can
be seen that the approximation decreased the analysis
time a lot for some of these programs. Nonetheless,
in one case, the timeout was also exceeded in the new
version of Atomer. This shows that the analysis may
still take a quite long time in some cases even after the
approximation. The reason is that in these low-level
programs, there are vast and complicated functions
(thousands LOC) that contain in-lined code.

Table 1. Aggregated results of the evaluation of
Atomer’s analysis scalability

v1.0.0 v2.0.0
Phs. 1 Phs. 2 Phs. 1 Phs. 2

Avg. Time (s) 70.98 109.11 37.96 50.93
Total Time (s) 4,117 5,892 2,164 2,750
Timeouts 4 9 3 4

6. Conclusion and Future Work
In this paper, several enhancements of the static ana-
lyser Atomer have been proposed, implemented, and

Table 2. Individual results of the evaluation of Atomer’s analysis scalability (TIMEOUT is >600s)

Program LOC v1.0.0 v2.0.0
Phs. 1 Time (s) Phs. 2 Time (s) Phs. 1 Time (s) Phs. 2 Time (s)

btscanner 2.1 9,142 TIMEOUT N/A 47.33 69.04
daemon (libslack) 0.6.4 42,857 280.75 40.85 11.40 10.43
crossfire-client-gtk2 1.71 41,185 1.74 TIMEOUT 1.71 14.58
c-icap 0.4.2 39,254 154.86 20.70 2.37 6.14
hmmer2 (hmmcalibrate) 2.3.2 38,301 109.79 TIMEOUT 10.07 TIMEOUT
towitoko 2.0.7 12,339 38.23 77.50 2.27 10.69
mesa-demos 8.3.0 2,424 397.10 TIMEOUT 46.50 5.83
freecell-solver 3.26.0 15,408 37.28 0.78 3.45 9.81
tgrep 1 3,190 240.36 TIMEOUT 0.92 0.74
sort (GNU Coreutils) 7,523 5.33 0.39 1.49 0.91

experimentally evaluated. It turned out that such in-
novations improved the accuracy and scalability of the
analysis. However, there are still some other improve-
ments and ideas to work on. For instance, consider-
ing formal parameters and distinguishing the context
of called functions, or combinations with a dynamic
analysis. Another interesting idea is to use machine
learning to learn appropriate values of the analysis’
parameters (introduced in this paper) for particular
programs. Furthermore, it is needed to perform more
experiments on real-life programs to find and report
new bugs. The work on this project will continue
within, but not only, the master’s thesis of the author.

Acknowledgements
I thank my colleagues from VeriFIT for their assist-
ance. I would particularly like to thank my supervisor
Tomáš Vojnar. I also wish to acknowledge Nikos Goro-
giannis from the Infer team at Facebook for valuable
discussions about the analyser’s development. Lastly,
I acknowledge the financial support received from the
H2020 ECSEL projects AQUAS, Arrowhead Tools,
and VALU3S.

References
[1] D. Harmim. Static Analysis Using Facebook In-

fer to Find Atomicity Violations, 2019. Bachelor’s
thesis. Brno University of Technology, Faculty
of Information Technology. Supervisor T. Vojnar.

[2] R. J. Dias, C. Ferreira, J. Fiedor, J. M. Lourenço,
A. Smrčka, D. G. Sousa, and T. Vojnar. Verifying
Concurrent Programs Using Contracts. In Proc.
of ICST, 2017.

[3] A. Møller and I. M. Schwartzbach. Static Pro-
gram Analysis, 2020. Department of Computer
Science, Aarhus University.

[4] F. Nielson, H. R. Nielson, and C. Hankin. Prin-
ciples of Program Analysis. Springer Berlin
Heidelberg, 2nd edition, 2005.

[5] X. Rival and Y. Kwangkeun. Introduction to
Static Analysis: An Abstract Interpretation Per-
spective. The MIT Press, 1st edition, 2020.

[6] C. Calcagno, D. Distefano, P. W. O’Hearn, and
H. Yang. Compositional Shape Analysis by
Means of Bi-Abduction. In Proc. of POPL, 2009.

[7] S. Blackshear, N. Gorogiannis, P. W. O’Hearn,
and I. Sergey. RacerD: Compositional Static
Race Detection. Proc. of OOPSLA, 2018.

[8] P. Cousot and R. Cousot. Abstract Interpretation:
A Unified Lattice Model for Static Analysis of
Programs by Construction or Approximation of
Fixpoints. In Proc. of POPL, 1977.

[9] C. A. R. Hoare. An Axiomatic Basis for Com-
puter Programming. Commun. ACM, 1969.

[10] F. E. Allen. Control Flow Analysis. In Proc. of
a Symposium on Compiler Optimization, 1970.

[11] T. Reps, S. Horwitz, and M. Sagiv. Precise Inter-
procedural Dataflow Analysis via Graph Reach-
ability. In Proc. of POPL, 1995.

[12] M. Sharir and A. Pnueli. Two Approaches to
Interprocedural Data Flow Analysis. In Pro-
gram Flow Analysis: Theory and Applications,
chapter 7. Prentice Hall, 1981.

[13] J. Lerch, J. Spath, E. Bodden, and M. Mezini.
Access-Path Abstraction: Scaling Field-Sensitive
Data-Flow Analysis with Unbounded Access
Paths (T). In Proc. of ASE, 2015.

[14] J. Fiedor, M. Mužikovská, A. Smrčka,
O. Vašı́ček, and T. Vojnar. Advances in the
ANaConDA Framework for Dynamic Analysis
and Testing of Concurrent C/C++ Programs. In
Proc. of ISSTA, 2018.

[15] D. Kroening, D. Poetzl, P. Schrammel, and
B. Wachter. Sound Static Deadlock Analysis
for C/Pthreads. In Proc. of ASE, 2016.

	Introduction
	Facebook Infer
	Atomer: Atomicity Violations Detector
	Proposal of Enhancements for Atomer
	Implementation and Experiments
	Conclusion and Future Work

