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Abstract

In many real-world scenarios, scanned 3D models contain missing parts due to occlusion, scanning errors,

or the incomplete nature of the data itself. To mitigate those errors, methods are employed for the shape

completion of incomplete 3D models. The majority of existing methods that perform 3D model shape

completion are not robust enough and cannot handle large missing areas. The goal of this paper is to create

an automated process for the shape completion task using a supervised method based on deep learning.

The proposed solution is to use a diffusion-based model and handle the task as a generative problem to

create a complete shape from an incomplete one. The results showed a high capability of this model in the

shape completion task with an 81.6 IoU metric score on the test dataset. The model also demonstrates

strong generalization capabilities on shapes that are not part of the training distribution (average 70.9

IoU metric score). The strength of the proposed approach is in its processing in a low-resolution domain,

which enhances the inference speed and reduces the computational demands, given that diffusion models

are challenging in this respect.
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1. Introduction

With the increasing accessibility of tools that generate

3D data from physical shapes, there is a need for

solutions to address the potential drawbacks these

tools may present. The issue lies in the fact that

the scanned 3D model may have missing sections

that need repair [1]. The problem of filling the holes

is called shape completion. The existing method

performs well in filling small areas or flat surfaces

without extra details [2]. The ideal method for the

shape completion method should be able to handle

larger missing areas and complex geometry, which is

usually the case in real-world shapes.

To address the shape completion problem, deep learn-

ing methods are employed. Chu et al. [3] introduced

DiffComplete, a diffusion-based state-of-the-art ap-

proach to 3D shape completion on range scans rep-

resented by implicit shape representation. This ap-

proach yields encouraging results, even in instances

that fall outside of the training distribution. However,

the downside is that it requires substantial computa-

tional resources to infer the complete shape, and

the quality of the final shape it provides, due to

small grid resolution (TSDF representation), may

not be adequate for potential production applications.

ShapeFormer, introduced by Yan et al. [4], used for

shape completion, takes advantage of a compact 3D

representation known as a Vector Quantized Deep

Implicit Function (VQDIF). This compact represen-

tation drastically reduces the sequence length from

cubic to quadratic in terms of feature resolution.

The proposed solution to handle shape completion

is based on the DiffComplete approach. The aim is

to improve the shortcomings and explore the poten-

tial capabilities of the Diffcomplete approach. The

primary improvement involves a new method of re-

ducing the input resolution, processing it, and then

subsequently rescaling it back to its original size. The

additional enhancement incorporates user input in the

form of a Region of Interest to more effectively guide

the completion process and rectify failure cases.

2. Proposed method

Diffusion process

The approach uses the probabilistic diffusion model,

which includes a forward and backward process (see

Equation 1 and Equation 2 ). In the forward pro-
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cess q (x0:T ), Gaussian noise is gradually added to

obscure the ground-truth shape x0, into a random

noise volume xT where T is the total number of time

stamps. The backward process pθ (x0:T ,c) utilizes

a shape completion network, with learned parame-

ters θ, to iteratively remove noise from the noise

volume xT . The iterative noise removal process is

visualized in Figure 1 . The network architecture

used (see Figure 2 ) employs a dual branch strat-

egy. One branch handles complete shapes, and an-

other branch handles incomplete shapes. The primary

branch takes as input a corrupted complete shape

TSDF TC . The secondary branch processes incom-

plete shapes TSDFP and mirrors the structure of

the primary branch. This branch focuses on efficient

feature extraction and utilizes a projection layer af-

ter each encoder/middle block to forward multiscale

features to the primary branch’s decoder blocks.

Training and Inference

The training objective for this approach is as follows:

argmin
θ
Et,x0,ϵ,c

[
∥ϵ− ϵθ (xt , t,c)∥2

]
, ϵ ∈N (0, I),

To maximize the probability of generation pθ (x0) (to

obtain the original shape), the mean square error loss

function is used.

During the inference phase, a randomized 3D noise

volume of the standard Gaussian distribution is used as

input xt . The trained completion network is then used

for T iterations to produce x0 from xt , conditioned on

the partial shape. To accelerate the inference process,

the technique of subsampling a set of timestamps

[1, . . . ,T/10] is used [5]. The visualization of the

inference process is shown in Figure 4 .

Evaluation Metrics

To ensure a comprehensive and unbiased quantitative

evaluation, three metrics are used: Intersection over

Union (IoU), Chamfer Distance (CD), and Mean

Absolute Error (L1 Loss). IoU measures the overlap

between two binary volumes, presented in a voxel

grid: the predicted volume Vp and the ground truth
volume Vgt . The chamfer distance is a measure of
similarity between two point clouds, defined as the

average distance between each point in one cloud

and its nearest neighbor in the other cloud. mean

absolute error, also known as L1 loss, quantifies the

average magnitude of errors in a set of predictions

without considering their direction.

3. Experimental Results

The experiments first focused on the reproducibility of

the proposed method to match the results of the orig-

inal paper. The absence of code for the Diffcomplete

approach and some ambiguities in the paper necessi-

tated adaptations, resulting in a structure that might

diverge from the original Diffcomplete. Quantitative

results for various datasets, including those with out-

of-distribution shapes, are shown in Table 1 . The

subsequent investigation delved into the network’s

perception of the condition by attempting to complete

the same model using diverse inputs with differing

missing parts, revealing a heavy reliance on repetitive

parts. The following experiment tested the ability

to complete shapes outside the training distribution,

yielding promising results. To address the failure cases

identified in the base approach, an additional input

was introduced in the form of a Region of Interest

(RoI). The model incorporating the RoI surpassed

the performance of the base solution. The primary

challenge was the computational requirements, which

allowed for experiments with low-resolution grid sizes

for the input representation. The experiment involv-

ing the proposed low-resolution processing yielded

positive results, but at the cost of poorer general-

ization. The visual results of the base solution are

presented on the left side of Figure 3 , while the

right side displays results at higher resolution, noting

that the inputs retain the same low-resolution size.

4. Conclusions and Future Work

The improvements made to the existing DiffCom-

plete method showed a great improvement over the

original method. The proposed method is capable of

producing high-quality shapes for various scenarios.

Future Work

Although the proposed solution shows strong results

in shape completion, there is substantial room for

improvement. Exploring efficient 3D network modules,

such as SparseConv [6] or Octree-based [7] layers,

could offer a viable way to handle high-resolution 3D

shapes without incurring prohibitive computational

costs. Further research could focus on the diffusion

process, by experiment with number of iterations

steps, using different sampling schedulers or noise

schedulers could also be introduced to assess their

impact on training efficiency and the quality of results.

There is also an intention to modify the method to

suit the medical data related to cranial implants. It

should be noted that no literature has yet tried a

similar approach.
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