GENERATIVE MODELS FOR 3D SHAPE COMPLETION

Motivation and Proposed Method

The **goal** is to **automatically complete 3D shapes** based on the incomplete input using deep learning techniques. In many real world scenarios, scanned 3D models contain missing parts due to **occlusion**, **scanning errors** or the **incomplete nature** of the data itself.

The **proposed solution** is to use a **diffusion-based model** and handle the task as a generative problem to create a complete shape from the incomplete one.

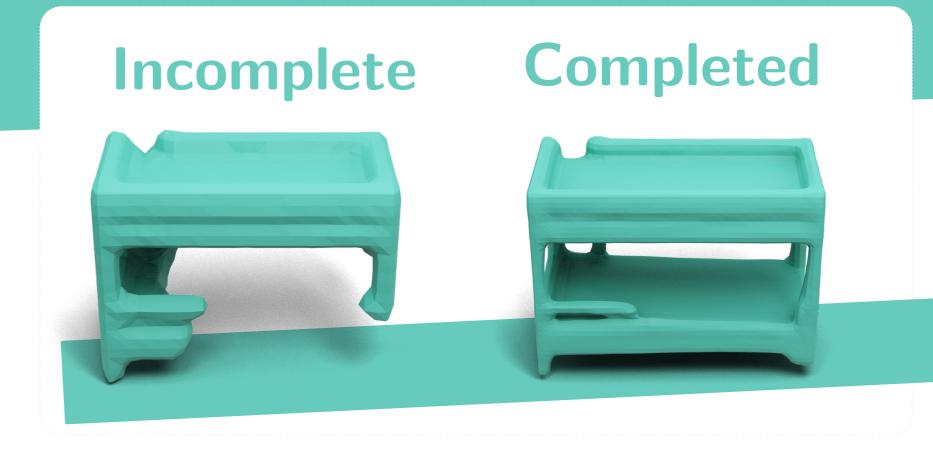
Forward process:

$$q(x_{0:T}) = q(x_0) \prod_{t=1}^{T} q(x_t \mid x_{t-1}), \quad q(x_t \mid x_{t-1}) := \mathcal{N}\left(\sqrt{1 - \beta_t} x_{t-1}, \beta_t \mathbf{I}\right).$$

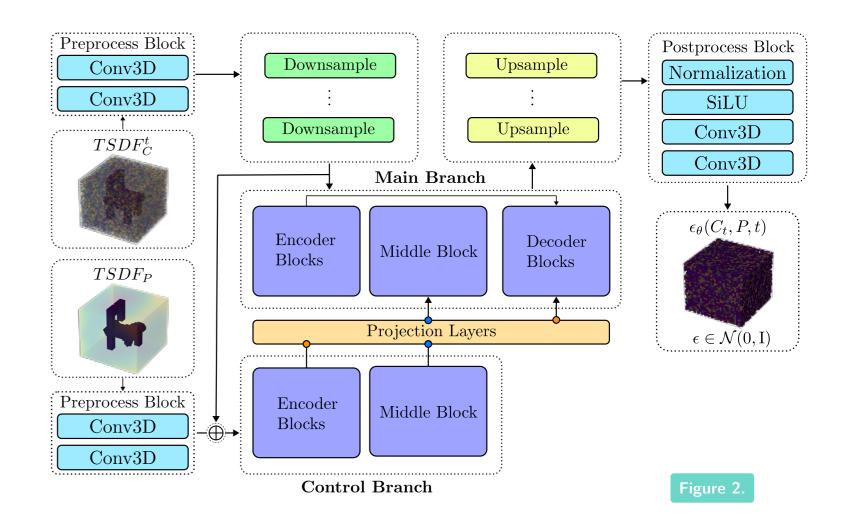
Backward process:

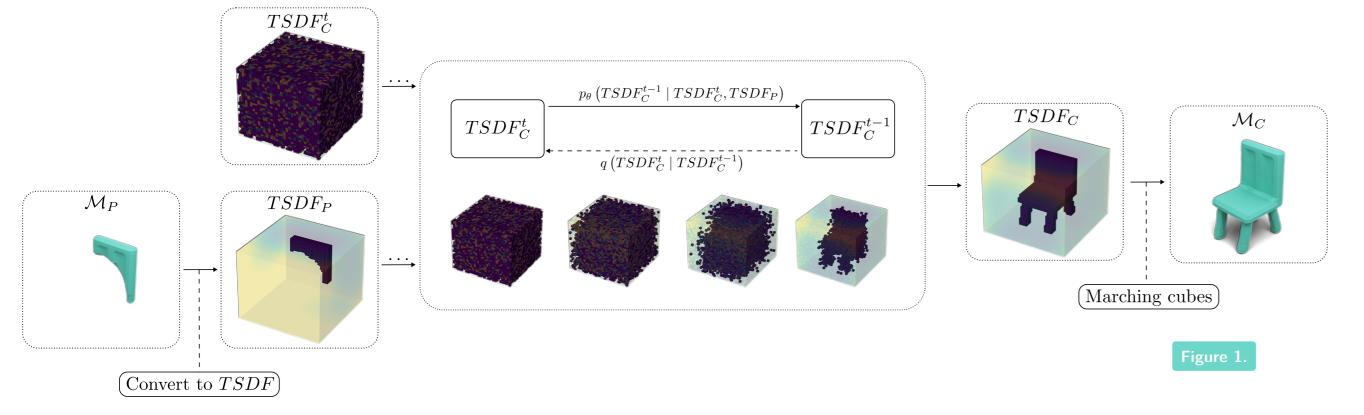
$$p_{\theta}(x_{0:T}, c) = p(x_{T}) \prod_{t=1}^{T} p_{\theta}(x_{t-1} \mid x_{t}, c), \quad p_{\theta}(x_{t-1} \mid x_{t}) := \mathcal{N}(\mu_{\theta}(x_{t}, t, c), \sigma_{t}^{2}\mathbf{I}).$$

Author: Peter Zdravecký Supervisor: Tibor Kubík



Backward process is modeled using a **two-branch** architecture utilizing **3D Unet**, to handle the input and condition.

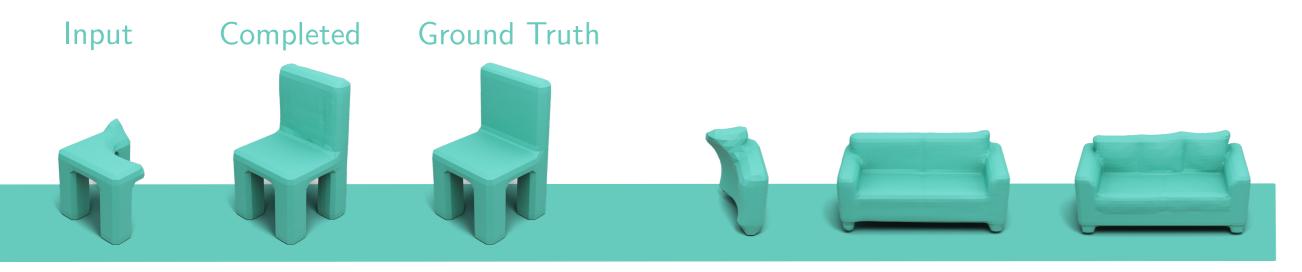




- 1. Preprocess the input to a higher-dimensional space.
- 2. Downsample the input to spatial resolution of condition.
- 3. Process input/condition using two-branch 3D UNet.
- 4. Upsample output back to the original resolution.
- 5. Cast output to a lower-dimensional space.

Results and Conclusion

Experimental results show **high capability** of this model in **shape completion** task with high score of IoU for chosen datasets. The model possesses a strong ability to make use of the repetitive shape parts to adapt to data out of the training distribution. To enhance the generative process, the **Region of Interest** can be utilized to define the area of the missing parts. Additional experiments focused on generating results in higher resolution. A method was proposed for this purpose that uses **Iow-resolution processing** followed by upscaling process.



Dataset	Metrics		
	$IoU\uparrow(\times 10^2)$	$CD\downarrow(\times 10^2)$	$\mathcal{L}_1\downarrow$
Objaverse – Furniture	81.62	3.53	0.026
Objaverse – Vehicles	76.05	4.21	0.035
Objaverse – Animals	70.46	5.48	0.052
ModelNet	63.34	5.93	0.055
ShapeNet	73.93	5.52	0.048

Quantitative results on multiple datasets.

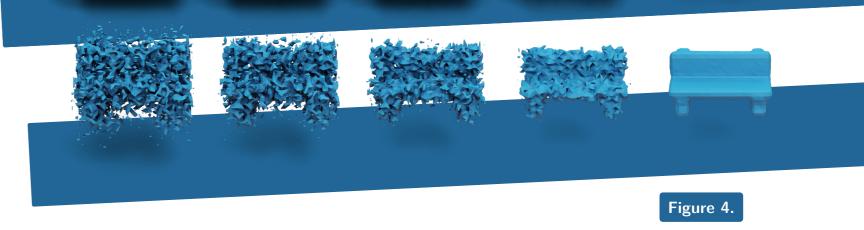
<section-header>

Figure 3.

Equation 1

Equation 2

The produced **results** from the automated shape completion are **very promising** for **real world** use. However, the inference time takes approximately **3-5 seconds**, therefore shape completion in real time is currently impossible.



Inference caputerd in different timestamp of backward diffusion process.

