Discrete modeling of transaction

Author: Tomáš Marek Supervisor: Ing. Jan Zavřel 2024

Objectives

- create a design for a highly simplified Bitcoin client that can create, receive, and send messages representing Bitcoin transactions and that operates according to the algorithm from the Bitcoin Core Project implementation
- create a simulation model in OMNeT++ simulator
- simulate the Bitcoin network with a monitoring node that keeps track of the messages from Bitcoin clients and exports a CSV file with collected information
- analyze the message propagation and the behavior of the simulation
- identify any significant nodes in the Bitcoin network
- identify possible source nodes of transactions

Topology of the simulation network

Figure 1: Topology of the simulation network. The bitcoinNode0 generates the transaction (tx). The monitoring node on the top of the topology is connected through outbound connections to all reachable nodes collecting the information about the generated tx from all nodes.

Pseudocode of the Bitcoin client propagation algorithm

```
OUTBOUND_INTERVAL \leftarrow2 seconds
INBOUND_INTERVAL \leftarrow5 seconds
mempool.contains(receivedTx):
    nothing /* ignore the tx */
    e: /* tx is not in the mempool */
    mempool.add(receivedTx)
    for all outbound connections:
        delay \leftarrowGetExponentialRand(OUTBOUND_INTERVAL)
        sendToPeer(delay)
    delay \leftarrow GetExponentialRand(INBOUND_INTERVAL)
    for all inbound connections:
    sendToPeer(delay)
```


CSV file structure

run, TXID, peer, timestamp

Tx propagation process

source node peer1 peer2

Sequence diagram of transaction propagation process, where source node generates the tx.

