
http://excel.fit.vutbr.cz

Data augmentation integration into PyTorch

Ladislav Vašina*

Abstract

Using audio augmentations which are by default part of the machine-learning library PyTorch can sometimes

be insufficient because it contains just a relatively low number of mostly low complex augmentations.

At that point, researchers need to look for publicly available tools for audio augmentation. Various of these

tools are available, but each of them has distinct properties and can work with different types of data, have

different interfaces, or work with various devices on which it can compute its augmentations. It means

that to obtain a larger pool of different augmentations, researchers must use multiple of these tools

in conjunction. This paper presents a tool that creates a unified and simple interface on top of the selected

audio augmentation libraries and tools that can be used in conjunction with the PyTorch library. Python

library called AudioAugmentor is created and published to PyPi, so that every researcher can easily and

quickly start using it to augment their audio data. It allows easier augmentation of PyTorch’s DataLoader,

standalone audio recordings, or augmentation of the local datasets via just one interface with a wide range

of audio augmentations.

*xvasin11@stud.fit.vutbr.cz, Faculty of Information Technology, Brno University of Technology

1. Introduction

Training of the artificial intelligence models needs a lot

of data for their creation. In order to create robust

models that enable high-quality speech recognition,

not just in the laboratory environment, a diverse train-

ing dataset is needed. A common practice for gaining

this diversity is data augmentation. The number of

available audio augmentations in the most widely used

machine-learning framework PyTorch is low and it

does not contain more complex audio augmentations.

When you want to apply augmentations that are not

included within the PyTorch library, you need to look

for publicly available tools that can provide desired

augmentations. There are multiple of these tools, but

each of them has different properties so in order to use

a wider range of audio augmentations, you need to

use multiple of these tools and handle the differences

between them. Precisely the differences can be, that

some tools work with different data types, some can

compute augmentations on CPU, some can compute

them on GPU, and mainly each tool has a various

pool of available audio augmentations and distinct

interfaces. So in order to apply a larger range of

various audio augmentations, you need to learn how

to use multiple augmentation tools and while using

them in combination, solve different characteristics

of each of them.

At this moment the most integrated solution for audio

augmentation within the PyTorch framework is its

own library torchaudio1. It works great with tensors,

can apply augmentations on GPU, and has SpecAug-

ment [1] implemented, which is a modern approach

to the Mel [2] spectrogram augmentation. The next

existing library is audiomentations2. It provides the

largest range of augmentations, but can only work on

CPU and does not provide complex room simulation

options or the option to apply various audio codecs.

Torch-audiomentations3 is the complementary li-

brary to audiomentations, which allows application of

the augmentations on GPU, but it contains a lower

number of the augmentations. For simulation of

room impulse responses, there is a complex library

pyroomacoustics4, which allows the creation of vari-

ous rooms by user definition. It also contains large

lists of materials with different absorption coefficients,

1https://pytorch.org/audio/stable/index.html
2https://github.com/iver56/audiomentations
3https://github.com/asteroid-team/

torch-audiomentations
4https://github.com/LCAV/pyroomacoustics

http://excel.fit.vutbr.cz
mailto:xvasin11@stud.fit.vutbr.cz
https://pytorch.org/audio/stable/index.html
https://github.com/iver56/audiomentations
https://github.com/asteroid-team/torch-audiomentations
https://github.com/asteroid-team/torch-audiomentations
https://github.com/LCAV/pyroomacoustics


that can be used as floors, walls, or ceilings during

room simulation. You can also place multiple speak-

ers within the simulated room. Audio codecs can be

applied using ffmpeg-python5 library which provides

a simple python interface over the FFmpeg6 tool.

I have proposed a library that provides several classes

and functions which are used to augment either Py-

Torch’s DataLoader, standalone audio recordings, or

local audio datasets. The user passes the augmenta-

tions (via their general names) and their parameters

to the function, that handles the user’s input and it

returns a list of augmentations, where each augmen-

tation is chosen from a specific library or tool that is

the most optimal for that augmentation. I have also

added an option that allows users to pass a range,

from which parameter value will be randomly chosen,

to torchaudio augmentations, which was not possible

before. Users can also choose to define augmenta-

tions via pseudo-SoX command, which is parsed and

handled using the torchaudio library. Room simula-

tion is handled using the pyroomacoustics library and

users can generate random rooms just by defining

the number of vertices and the minimal and maximal

lengths (in meters) of the X and Y axes within which

the room is going to be generated.

This created library was named AudioAugmentor and

was published on PyPi. AudioAugmentor provides

a simple interface, which users can easily use to aug-

ment audio data while using various approaches. Au-

dioAugmengtor’s interface unites interfaces of mul-

tiple audio augmentation tools and libraries while

maintaining their core properties and it also accepts

augmentations definition via pseudo-SoX commands.

This makes the augmentation of audio data an easy

process, that does not require handling of different

interfaces and specifics of various augmentation tools.

2. Poster description

Figure 1 shows one of the options for how the user

can specify which augmentations should be applied.

This option enables the usage of pseudo-SoX com-

mand while initializing the classes that handle the

augmentations. Pseudo-SoX command saved to vari-

able sox1 shows the format of the command and

means that the effects of normalization, a gain of

20 dB, a high-pass filter with a cutoff frequency of

300 Hz and phaser will be applied to the audio. Com-

mand saved to variable sox2 shows the extension of

this pseudo-Sox command, which allows also speci-

5https://github.com/kkroening/ffmpeg-python
6https://ffmpeg.org/

fication of the audio codec, that should be applied

after the application of SoX effects.

Figure 2 shows two Mel spectrograms, where the

top is without any augmentation and the bottom

one shows an application of the convolution with

a generated room impulse response which is internally

generated using the pyroomacoustics library.

Figure 3 shows a code snippet, that tries to apply

various audio augmentations from different augmen-

tation libraries. You can see that in order to apply

all the desired augmentations you have to use mul-

tiple library interfaces and handle the conversion to

correct data types, data shapes, and other specifics

of each library. This problem is solved by using the

proposed AudioAugmentor library. Figure 4 shows

the usage of this library and you can see right away

that in order to apply the same audio augmentations

as in Figure 3 you can simply use just one interface,

which you can use to specify all the augmentations

and apply them directly on your audio recordings.

3. Conclusions

Python library AudioAugmentor is proposed to solve

the problem of a low number of audio augmentations

within the PyTorch framework. It also solves the

differences between various augmentation tools so

they are easily usable though one simple interface.

AudioAugmentor provides several classes and func-

tions, that can be used to augment not just PyTorch’s

DataLoader, but also standalone recordings, or local

audio datasets. AudioAugmentor is published on the

PyPi platform so that everyone can easily download

it and start using it straight away. It contains docu-

mentation of the usage and examples presented via

Google Colab notebook. AudioAugmentor is tested

positively for the ability to recreate experiments. It

has also been tested on the task of fine-tuning the

ASR system Whisper.

Acknowledgements

I would like to thank my supervisor Ing. Igor Szőke,

Ph.D. for his help.

https://github.com/kkroening/ffmpeg-python
https://ffmpeg.org/


References

[1] Daniel S. Park, William Chan, Yu Zhang, Chung-

Cheng Chiu, Barret Zoph, Ekin D. Cubuk, and

Quoc V. Le. SpecAugment: A simple data aug-

mentation method for automatic speech recogni-

tion. In Interspeech 2019. ISCA, 9 2019.

[2] John C. Steinberg. Positions of Stimulation in

the Cochlea by Pure Tones. The Journal of the

Acoustical Society of America, 8(3):176–180, 01

1937.


	Introduction
	Poster description
	Conclusions
	References

