| adislav VasSina

Data augmentation

Integration into

supervisor: Ing. Igor Szoke, Ph.D.

Objectives

e |ntegrate various audio augmentation tools into one,
so it can be easily used with PyTorch.

e Design a simple interface for users to apply
augmentations.

soxl = '—-—-sox="norm gain 20 highpass 300 phaser 0.5 0.6 1 0.45 0.6 -s"'
sox2 = '——sox="norm gain 20 highpass 300 phaser 0.5 0.6 1 0.45 0.6 -s" amr audio_bitrate 4.75k'

Fig 1 — SoX command used for the augmentation

Results

o Python library AudioAugmentor which provides a simpler
interface over the multiple audio augmentation tools.

Reduced complexity while defining augmentations from
different frameworks — You only need one library.

Augment audio with classes that are usable with PyTorch’s

e Dataloader, standalone waveform or with a local directory of

recordings.

AudioAugmentor X

import os

import ffmpeg

import tempfile

import torchaudio

import torchaudio.io as

import torchaudio.transforms as T
import torch_audiomentations as

import audiomentations as

signal, fs = torchaudio.load('test.wav'

pitch_shift = T.Pitch i =16000
pitch_shifted = pitch_ i :

aa_augment =

aa_ready_sample = pitch_shifted.dets
aa_augmented = aa_augmen: =aa_read

ta_augment =

ta_ready_sample = torch.from_numpy
ta_ready_sample = ta_ready_sample
ta_augmented = ta

fd, tmp_output_path = tempflle k
with tempfile 1 F
torchaudio ut.name ugm | ' : 0 16000

') as tmp_input

with os.fdoj fd, 'w') as tmp
ffmpeg put (tmp_1inj name

=8000

="'amr'
="quiet"

0s.remove (ti input.name
final, fs = torchaudio.
oS [I

Fig 3 — Application of various augmentations
without AudioAugmentor

PyTorch

f [Hz]

f[Hz]

16384
8192
4096
2048
1024

512

16384
8192
4096
2048
1024

512 P e R

M@ FIT 2024

Implementation

Integrated different augmentations from torchaudio,
audiomentations, torch-audiomentations,
pyroomacoustics, ffmpeg-python libraries.

Handling of the miscellaneous properties and interfaces of
the integrated libraries.

Enabling easy usage of SoX (Sound eXchange) commands
to augment audio data.

Created random room generator so user can make the
recording sounds like it's in a different room.

Fig 2 — Mel-Spectrograms of recording before (top)
and after (bottom) applying room impulse response

AudioAugmentor

from AudioAugmentor import core, transf_gen
signal, fs = torchaudio 'test.wav'

transformations = transf_sgen e
={'sample_rate': 16000
'n_steps': 4
o1
="'min_amplitude=0.05, max_amplitude=0.1, p=1'

'min_cutoff_freq': 500
'max_cutoff_freq': 600
'sample_rate': 16000
Ipl 1

={'audio_bitrate': '4.75k'

augment = core./

final =

Fig 4 — Application of various augmentations
with AudioAugmentor

