
http://excel.fit.vutbr.cz

GLSL Shader Debugging Toolkit

Onďrej Sabela*

Abstract

This paper presents a solution for shader program inspection and debugging. The goal is to provide

a workflow similar to typical debuggers like GDB or LLDB, while also displaying information about the

graphics API’s pipeline state. A shared library hooking mechanism is employed to establish a connection

with the target application. All function calls to the graphics API are intercepted, the important parameters

are logged and used to build a snapshot of the internal graphics pipeline state. Source codes are organized

in a configurable hybrid (both physical and virtual) file system. As the user performs debugging actions

(e.g. source code stepping, making modifications, breakpoints), the code is rewritten, instrumented, and

recompiled in the background, transparently to the user. Emphasis was placed on ensuring the solution

is flexible, hardware-independent and stand-alone. The complete solution, Deshader, comprises a shared

library, a runner application and an extension for Visual Studio Code, which is integrated into the library.

*xsabel03@stud.fit.vutbr.cz, Faculty of Information Technology, Brno University of Technology

1. Introduction

The term ”debugging” has become synonymous with

”stepping through source code” in modern parlance.

While there are some proprietary GPU debuggers for

general compute programs, they often lack support

for primarily graphics APIs like OpenGL or Vulkan.

Until recently, Microsoft’s PIX was the only notable

exception, offering shader debugging since the early

versions of DirectX. This may stem from the fact that

standardizing debugging features is not a primary fo-

cus of the Khronos group. The most widely used open-

source tool for graphics debugging, RenderDoc, was

the first to support debugging for the OpenGL Shad-

ing Language, GLSL, under Vulkan, thanks to its au-

thor who proposed the SPV KHR non semantic info

[1] and the related NonSemantic.Shader.DebugIn-

fo.100 [2] extensions for Vulkan and SPIR-V.

While other solutions have existed in the past (NVIDIA

FX Composer, Strengert [3], Hilgart [4]), all of them

have been abandoned. Their failure can be attributed

to certain design incompletenesses and compromises,

such as dependency on a custom compiler, overly iso-

lated environment, and support for only some shader

stages. Both the historical and contemporary solu-

tions are generally based on one of three very different

implementation approaches:

1.1 Instruction Level Debugging

NVIDIA’s CUDA-GDB, AMD’s ROCgdb and Intel®
Distribution for GDB all leverage deep knowledge of

their instruction set architecture, enabling them to

create a genuine execution environment similar to

traditional debuggers, providing the most detailed

and deep information (e.g. occupancy) and support

heterogeneous (CPU and GPU simultaneously) de-

bugging. However, proprietary instruction level de-

buggers lack the support for graphical APIs, although

it is practically possible (a proof-of-concept can be

found in these blog posts [5]). Another approach is

to simulate the program execution.

Microsoft offers PIX [6] (formerly Visual Studio Graph-

ics Diagnostics) for DirectX high-level shaders (HLSL)

and low-level DXBC/DXIL pseudo-assembly. Render-

Doc [7] and ShadeRed [8] also make use of a virtual

machine for SPIR-V pseudo-assembly execution. The

simulation approach can be sensitive to differences

between the virtual and physical devices, requiring

continuous updates to remain synchronized with the

API and extensions. There also have been criticisms

regarding performance, the absence of heterogeneous

debugging, and the limitations of the simulated envi-

ronment. However, both methods have an advantage

of full control over program execution and state.

http://excel.fit.vutbr.cz
mailto:xsabel03@stud.fit.vutbr.cz


1.2 Source Code Instrumentation

This concept essentially involves ”rewriting the shaders

to accept and output additional information”, as

demonstrated in academic works such as [3], [4] (both

on GLSL source level) and Purcell [9] (on ARB assem-

bly level). Instrumentation doesn’t require knowledge

or even re-implementation of the instruction-level

model and can be largely hardware-agnostic. How-

ever, the implied extensive modifications to the shader

code and graphics pipeline must be made with preci-

sion to avoid any unexpected behavior, which can be

difficult to reliably detect. Nevertheless, this is the

most flexible concept, which is why it was chosen as

appropriate for Deshader. Additionally, it addresses

the current gap in up-to-date solutions of this type.

2. Features of a Shader Debugger

I have defined several fundamental features: source

code stepping, breakpoints, conditional breakpoints,

logging (printf-debugging) – as can bee seen on

Figure 3a ; variable watching, pipeline state inspec-

tion, edit and continue. To achieve the flexibility goal,

additional secondary features are described in the

following paragraphs. These features help address

specific challenges inherent to GPUs and OpenGL,

the supported graphics API.

2.1 An Easy Connection and Control Interface

Controlling Deshader from the host application must

be done in a way that does not cause any unin-

tended behavior when Deshader is not plugged in.

For example, the OpenGL specification [10] includes

the glDebugMessageInsert function, which can be

hooked and used as a communication channel. Ad-

ditionally, the GLSL specification [11] features the

#pragma directive, which is ”not subject to preproces-

sor macro expansion” and can be safely ignored by the

compiler. As summarized in Figure 1a , commands

can thus be accepted via:

1. the glDebugMessageInsert function – when

the ID parameter matches 0xDE5ADE[X],

2. #pragma deshader directives directly in GLSL

source code, or

3. a side channel for external GUI – Deshader

implements WebSocket and HTTP protocols.

Traditional debuggers typically rely on operating sys-

tem calls to attach to running processes, limiting

the ability to connect multiple debuggers simultane-

ously. To enable heterogeneous computing, Deshader

uses a library loader hooking method, as illustrated

in Figure 1b . On Linux, injecting a library into a

program can be accomplished using the LD PRELOAD

environment variable, or DYLD INSERT LIBRARIES on

MacOS. On Windows, simply placing a DLL with

the same name as the hooked DLL into the work-

ing directory is sufficient. The helper application

deshader-run automates this process.

2.2 Organizing Source Code

Shaders are compiled from source strings on-the-fly

and OpenGL doesn’t know their physical origin. Each

program consists of shader stages which can be com-

posed of multiple shader objects. Shader objects

can be reused across stages and programs, similar

to shared C objects, resulting in sophisticated logical

relations (see Figure 2b ). Deshader employs a vir-

tual file system that supports hardlinks and mapping

points to physical storage. Users can control shader

names using the interfaces shown in Figure 2a .

2.3 Thread Grouping and Selection

Pausing and stepping through one thread execution

can yield different results than pausing and stepping

through all shader threads simultaneously. Moreover,

in OpenGL, an application can create multiple isolated

or cooperating graphics contexts, each with its own

shaders, which should pause and continue indepen-

dently. Handling context switching in a thread-safe

manner is essential. Deshader exposes command in-

terface to strictly express the user’s decision regarding

thread selection and grouping.

3. Instrumentation Techniques

After ”start debugging” request, Deshader enters de-

bugging loop (see Figure 3b ). The pipeline state is

captured, and shaders are then processed by a syn-

tax parser that outputs locations of all statements

(where a step or breakpoint can be placed), declara-

tions (data objects and functions), variable scopes,

function calls and flow control (conditionals, loops)

blocks, where threads can diverge, requiring additional

checks (guards) for previous breakpoint hits. Step-

ping is implemented by placing a counter increment

and conditional return after each statement, as illus-

trated in Figure 3c . Breakpoints are implemented

similarly, but their guards are only placed after func-

tion calls and flow control blocks (see Figure 3d ).

Input parameters (selected thread, next step index)

are straightforward to pass to shaders using uniforms.

Outputting data (logging, reached step, stack trace)

requires either the use of a Shader Storage Buffer

Object and an atomic counter (as a cursor for writing

into the buffer), or a Renderbuffer when the amount

of output data is constant for each thread.



Acknowledgements

I would like to thank my supervisor Ing. Tomáš Milet,

Ph.D. for insights and sharing his experience with

not-so-well-documented behaviors and internals of

OpenGL and GLSL, various recommendations about

the instrumentation implementation, and keeping me

patiently on track.

References

[1] Baldur Karlsson. SPV KHR non semantic info.

https://github.com/KhronosGroup/

SPIRV-Registry/blob/main/extensions/

KHR/SPV˙KHR˙non˙semantic˙info.

asciidoc, 2020. Accessed: 20-04-2024.

[2] Baldur Karlsson. SPIR-V NonSemantic Shader

DebugInfo Instructions. https://github.

com/KhronosGroup/SPIRV-Registry/blob/

main/nonsemantic/NonSemantic.Shader.

DebugInfo.100.asciidoc, 2022. Accessed:

20-04-2024.

[3] Magnus Strengert, Thomas Klein, and Thomas

Ertl. A Hardware-Aware Debugger for the

OpenGL Shading Language. In Mark Segal and

Timo Aila, editors, SIGGRAPH/Eurographics

Workshop on Graphics Hardware. The Euro-

graphics Association, 2007.

[4] Mark Hilgart. Step-Through Debugging of GLSL

Shaders. School of Computer Science, DePaul

University, Chicago, USA, 2006.

[5] Marcell Kiss. Making an AMDGPU de-

bugger. https://martty.github.io/posts/

radbg˙part˙1/, January 2023. Accessed:

2024-01-12.

[6] Microsoft. HLSL Shader Debugger - Visual

Studio. https://learn.microsoft.com/

en-us/previous-versions/visualstudio/

visual-studio-2017/debugger/graphics/

hlsl-shader-debugger?view=vs-2017&

viewFallbackFrom=vs-2017%5C#

understanding-the-hlsl-debugger,

November 2016. Accessed: 20-04-2024.

[7] RenderDoc – an open source portable graphics

debugger. https://renderdoc.org/.

[8] ShadeRed – an open source shader IDE. https:

//shadered.org/.

[9] Timothy John Purcell. Debugging tools. In

ACM SIGGRAPH 2005 Courses, SIGGRAPH

’05, page 114–es, New York, NY, USA, 2005.

Association for Computing Machinery.

[10] Mark Segal and Kurt Akeley. The OpenGL®
Graphics System: A Specification (Version 4.6

(Core Profile)). The Khronos Group Inc., May

2022.

[11] John Kessenich, Dave Baldwin, and Randi Rost.

The OpenGL Shading Language, Version 4.60.8.

The Khronos Group Inc., August 2023.

https://github.com/KhronosGroup/SPIRV-Registry/blob/main/extensions/KHR/SPV_KHR_non_semantic_info.asciidoc
https://github.com/KhronosGroup/SPIRV-Registry/blob/main/extensions/KHR/SPV_KHR_non_semantic_info.asciidoc
https://github.com/KhronosGroup/SPIRV-Registry/blob/main/extensions/KHR/SPV_KHR_non_semantic_info.asciidoc
https://github.com/KhronosGroup/SPIRV-Registry/blob/main/extensions/KHR/SPV_KHR_non_semantic_info.asciidoc
https://github.com/KhronosGroup/SPIRV-Registry/blob/main/nonsemantic/NonSemantic.Shader.DebugInfo.100.asciidoc
https://github.com/KhronosGroup/SPIRV-Registry/blob/main/nonsemantic/NonSemantic.Shader.DebugInfo.100.asciidoc
https://github.com/KhronosGroup/SPIRV-Registry/blob/main/nonsemantic/NonSemantic.Shader.DebugInfo.100.asciidoc
https://github.com/KhronosGroup/SPIRV-Registry/blob/main/nonsemantic/NonSemantic.Shader.DebugInfo.100.asciidoc
https://martty.github.io/posts/radbg_part_1/
https://martty.github.io/posts/radbg_part_1/
https://learn.microsoft.com/en-us/previous-versions/visualstudio/visual-studio-2017/debugger/graphics/hlsl-shader-debugger?view=vs-2017&viewFallbackFrom=vs-2017%5C#understanding-the-hlsl-debugger
https://learn.microsoft.com/en-us/previous-versions/visualstudio/visual-studio-2017/debugger/graphics/hlsl-shader-debugger?view=vs-2017&viewFallbackFrom=vs-2017%5C#understanding-the-hlsl-debugger
https://learn.microsoft.com/en-us/previous-versions/visualstudio/visual-studio-2017/debugger/graphics/hlsl-shader-debugger?view=vs-2017&viewFallbackFrom=vs-2017%5C#understanding-the-hlsl-debugger
https://learn.microsoft.com/en-us/previous-versions/visualstudio/visual-studio-2017/debugger/graphics/hlsl-shader-debugger?view=vs-2017&viewFallbackFrom=vs-2017%5C#understanding-the-hlsl-debugger
https://learn.microsoft.com/en-us/previous-versions/visualstudio/visual-studio-2017/debugger/graphics/hlsl-shader-debugger?view=vs-2017&viewFallbackFrom=vs-2017%5C#understanding-the-hlsl-debugger
https://learn.microsoft.com/en-us/previous-versions/visualstudio/visual-studio-2017/debugger/graphics/hlsl-shader-debugger?view=vs-2017&viewFallbackFrom=vs-2017%5C#understanding-the-hlsl-debugger
https://renderdoc.org/
https://shadered.org/
https://shadered.org/

	Introduction
	Features of a Shader Debugger
	Instrumentation Techniques
	References

