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Abstract
The goal of this work is to propose an integration of formal methods into DiffKemp, a static analysis tool
for analyzing semantic differences of large-scale C projects. The aim of this extension is facilitating analysis
of more complex code changes to arithmetic and logic expressions. To achieve this, whenever a possible
semantic change is found, the equivalence of the ensuing code blocks is encoded into an SMT problem
instance and the difference is either confirmed or refuted using an SMT solver. The proposed solution has
been implemented in DiffKemp and our experiments show that it extends the capabilities of the tool.
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1. Introduction
In the vast world of software development, there are
some projects where maintaining semantic stability
between versions is crucial, because even a tiny change
could negatively impact the users of the said projects.
An example of such projects are various system libraries,
e.g., implementations of the standard C library, where
the semantics of the exported functions should remain
unchanged between versions so that other programs
can safely use these functions. In order to simplify and
automate identifying potential changes in semantics,
various static analyzers of semantic differences have
been developed.

There are several tools focusing on finding semantic
differences, their approaches vary significantly. On one
hand, there are tools based on formal methods which
can verify semantic equivalence with high precision but
do not scale well (e.g., LLRêve [1]). On the other
side of the spectrum, there are light-weight static
analyzers that are able to analyze large chunks of code
very fast but produce numerous false warnings or errors
(on the extreme end, the diff Unix utility could be
considered an example of this approach). One of the
tools, DiffKemp [2], tries to find a middle ground
between these two extremes.

DiffKemp builds on the idea that refactoring is typi-
cally done on a small part of the code, while the rest
stays intact. Therefore, the analysis algorithm in Diff-
Kemp compares the program mostly per-instruction

in the LLVM Intermediate Representation (IR). When
such comparison fails, DiffKemp tries to apply one
of its patterns that are known to preserve seman-
tics. While there are numerous patterns already im-
plemented in DiffKemp, there are still some cases
where the tool reports inequality despite the versions
being semantically equal. A common example of this
are changes to arithmetic and logic expressions, e.g.,
using distributive laws and other algebraic properties.
There are a lot of such possible refactorings, therefore
it is not feasible to implement them all manually as
patterns in the tool itself.
To overcome this, our work proposes an integration of
formal methods into the DiffKemp’s analysis algo-
rithm. Whenever a possibly differing instructions are
found and no pattern is applicable, the equivalence
of the ensuing code blocks is encoded into an SMT
problem instance and the difference is either confirmed
or refuted using an SMT solver.

2. Integrating Formal Methods into Diff-
Kemp’s Analysis Algorithm

The overall approach can be summarized as follows.
Whenever a possible semantic change is found and no
pattern is applicable, we try to perform the following
steps:

1. Find the nearest pair of instructions, after which
the code can be synchronized again, e.g., the
instructions are the same. The code blocks
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between the differing instructions and this pair
of instructions needs to be checked for semantic
equality. We focus only on sequential blocks
that do not manipulate the memory and have
no side effects.

2. If such a pair of code blocks was detected, en-
code the problem of checking their semantic
equality into the SMT problem. Let InV ar1
be the set of input variables of the first block,
varmap the bijection mapping semantically equiv-
alent variables, OutV ar1 the set of output vari-
ables of the first block, outmap the bijection
mapping output variables that are supposed to
be equal and Block1 and Block2 the encoding
of operations in (i.e., the formula representing
the semantics of) the first and second block,
respectively. We construct the formula:

∧
v1∈InV ar1

v1 = varmap(v1)∧

Block1 ∧Block2 ∧

¬
∧

out1∈OutV ar1

out1 = outmap(out1)

and use an SMT solver to check its satisfiability.
The blocks are semantically equal, iff the formula
is unsatisfiable. Intuitively, if we give both blocks
the same input, they need to produce the same
output in order for the blocks to be equivalent. If
the formula has a model, the model corresponds
to the inputs under which the outputs differ.
The formula on the poster gives an example of
encoding of semantic equality of the highlighted
blocks in the section with experiments.

3. If the SMT solver verified equality of the blocks
in the provided amount of time, continue the
analysis using DiffKemp’s main algorithm. Oth-
erwise, report semantic inequality of the pro-
grams.

3. Results and Experiments
We have implemented the proposed solution inside
DiffKemp using the Z3 [3] SMT solver. This partic-
ular solver was determined to be the best fit due to its
extensive support of various theories, a mature API,
active community and performance being on-par with
other state-of-the-art solvers.
To evaluate the impact of our extension on Diff-
Kemp, we have performed a series of experiments.
Firstly, we checked our solution on a small set of
simple hand-crafted examples in order to verify the ba-
sic functionality. More importantly, we experimented

with the EqBench [4] benchmark – a collection of
147 equivalent and 125 non-equivalent program pairs.
Some of the cases come from existing benchmarks
that were used to evaluate other tools for checking
semantic equivalence, such as Rêve and Clever,
i.e., they may contain very complicated refactorings,
since the tools are based on formal methods.
The table on the poster compares the results of Diff-
Kemp with and without our extension. We can see
that thanks to our extension, DiffKemp was able
to correctly analyze 4 more programs as semantically
equal in this particular configuration. One example of
such a program can be seen at the top of the poster.
While DiffKemp contains a pattern for inverse branch
condition, it was not applied in this case, since the
condition is not inverted syntactically (the condition
would need to be x ≤ 100). However, since the variable
is an integer, x < 101 and x ≤ 101 are semantically
equivalent – such nuances can nicely be checked using
an SMT solver.
We also experimented with our solution on projects of
larger scale. For example, we tried to check seman-
tic equality of functions that are part of the RHEL
Kernel Application Binary Interface1. While in this
experiment, the use of an SMT solver did not improve
the results, it showed that DiffKemp’s performance
is not degraded by our extension. Finally, we have
tried checking semantic equality of Linux commits
that contain the words optimize or refactor. We
managed to identify one commit, where our extension
facilitated correct analysis of the functions as seman-
tically equal. The said functions can be seen at the
bottom of the poster – unnecessary bitwise shifts have
been removed to reduce the number of instructions
needed to perform the operation.
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