
http://excel.fit.vutbr.cz

Machine Learning in Audio Effects

Jakub Sychra*

Abstract

Reverse engineering audio effects from mixed tracks is a complex topic that requires signal processing

and music engineering experience. This work aims to create a system capable of identifying the sequence

and parameters of guitar effects from a mixed audio track. Training data was created using clean

guitar sounds from IDMT-SMT-Audio-Effects, augmented by known effects (BitCrush, Chorus, Clipping,

Compressor, Delay, Distortion, High-pass filter, Ladder filter, Low-pass filter, Limiter, Phaser, and Reverb,

all implemented with a Python wrapper around standard VST effects). The system is based on VGGish

neural network architecture with several classification (presence of effects) and regression (parameters of

effects) heads. The performance of the algorithm is evaluated on classification and regression accuracy, as

well as in informal listening tests.

*xsychr06@stud.fit.vutbr.cz, Faculty of Information Technology, Brno University of Technology

1. Introduction

Audio effects are important building blocks of modern

music, no matter the genre. The process of choos-

ing effects does not follow rules, and as such this

process can be highly unpredictable. Due to this com-

plexity, reverse engineering audio effects affecting an

instrument in a mixed track can be quite difficult.

Recreating a specific effect chain based on a sample

requires experience in audio engineering, musical ex-

pertise, or both. With this knowledge, the process still

relies on guessing based on specific features of audio

effects, and to make the process worse, the sample

usually contains more than one instrument, and thus

some features may blend in with other instruments.

Even with the correct guess for an effect, the result

may be sensitive to the effect’s parameters or position

in the effect chain, adding further unpredictability.

The coverage of this topic in the literature is quite

scarce, and while some papers exist, their scope is

quite limited as they focus on either single effects

without parameters or heavily controlled combinations

of effects.

This work focuses on the detection of guitar effects

and their parameters from mixed samples. For the

purpose of extracting a guitar track from a mixed

sample, this work uses the state-of-the-art Music

Source Separator Demucs [1] to isolate the guitar

track, which is then processed into a batch of Mel-

spectrograms. This serves as input of the backbone

model, which extracts the features of the samples

and feeds them into a multi-head model containing

classification heads and regression heads. Each clas-

sification head and regression head focuses on one

specific effect, and thus all components of the model

work individually, and are trained to be able to classify

tracks containing any number of effects.

The final system performs fairly accurate classification

of effects in samples containing numerous effects

and even classifies effects outside of the controlled

dataset, where the implementations of effects differ

from the ones used in training. Parameter tuning is

the critical point of the system, as no solution that

could handle all of the parameter types of included

effects was found, therefore the system handles only

specific effects well, and as such this negatively affects

the final reconstruction of the audio.

2. Audio Effects

The main purpose of audio effects is to modify the

sound characteristic of the input signal. This modifi-

cation is usually achieved by either manipulating the

electrical signal directly using analog devices such as

guitar pedals, or by utilizing software tools to alter

http://excel.fit.vutbr.cz
mailto:xsychr06@stud.fit.vutbr.cz


the digital signal that are often aimed at digitally repli-

cating the effects of analog devices. These effects

work in chains, and as some of them are non-linear

systems, the order of effects is crucial to the final

sound. In addition to the order, each effect has a

certain amount of parameters that can significantly

alter the sound of the effect.

The audio effects chosen for this work are: BitCrush,

Chorus, Clipping, Compressor, Delay, Distortion,

High-pass filter, Ladder filter, Low-pass filter, Lim-

iter, Phaser, and Reverb.

These effects were chosen on the basis of being either

popular or offering an interesting substitution that

may fill space for unimplemented effects in recon-

struction.

3. Data

For the purpose of training, a dataset containing

known effects and their parameters was needed. For

this purpose, a dataset was created and tailored for

the needs of this work.

Based on the IDMT-SMT-Audio-Effects Dataset [2],

from which clean guitar recordings were used as a

basis for generating the effects dataset, using the Ped-

alboard [3] library that implements basic effects and

allows the use of VST plugins in Python environment.

Data were created with a random number of effects

with random parameter values while keeping track of

these configurations to avoid duplicate samples.

A total of 110k audio samples were used in total

duration of 61 hours, affected by 0-12 audio effects

with varying number of parameters.

4. Proposed System

4.1 Preprocessing pipeline

As the system aims to detect guitar effects from

mixed tracks, an important part of the system comes

within the first steps of the pipeline with Source

Separation. This module splits the incoming track

into instruments and sends the isolated guitar further

into the system. Such system is not flawless, and

as such, the outgoing instruments might be affected

by frequency cutoffs and artifacts, for example, faint

echoes of vocals.

In the next step, the guitar track is processed into

Mel-spectrograms within 0.960s windows that are fed

into a backbone of the model, implemented using

pre-trained VGGish [4] architecture.

4.2 Detection and Parameter estimation pipeline

Embeddings from the backbone model (VGGish) are

processed using classification and regression heads.

Each classification head has corresponding regres-

sion heads, and together, each group represents an

abstract effect head. These effect heads are each

trained on one specific effect with a set amount of pa-

rameters to detect and afterwards individually trained

on data containing varying amounts of effects.

Classification heads are implemented using 3 linear

layers followed by ReLU Activation.

Regression heads contain 4 linear layers followed by

the ReLU Activation function and Batch normaliza-

tion.

4.3 Reconstruction pipeline

From the detection result a text is compiled contain-

ing the predicted effects and their parameters as well

as live audio feed with these effects active.

The position of these effects is not within the scope

of this work.

Due to the implementation of the detected and recon-

structed effects and the issues of reverse engineering

the used library, the approach of altering audio stream

directly was chosen over implementing a VST plugin.

5. Results

For measuring the detection accuracy, a separate

test-set was defined. The obtained average effect

classification accuracy was 75 %, while parameter

estimation had an average mean error of 0.23 from

target parameters. Parameters are scaled to the 0.00-

1.00 range for consistency.

6. Conclusion and future work

The system implements a working pipeline that can

currently estimate effects from tracks, although the

reconstruction falls short on the inaccuracy of param-

eter detection.

Nevertheless, this work lays a solid foundation for fur-

ther research in the field and offers potential avenues

for improving the reconstruction system.

References

[1] Simon Rouard, Francisco Massa, and Alexandre

Défossez. Hybrid transformers for music source

separation. In ICASSP 23, 2023.

[2] Michael Stein. IDMT-SMT-audio-effects dataset,

January 2023.



[3] Peter Sobot. Pedalboard, July 2021.

[4] S Hershey. CNN architectures for large-scale audio

classification. In 2017 IEEE International Confer-

ence on Acoustics, Speech and Signal Processing

(ICASSP), pages 131–135. IEEE, March 2017.


	Introduction
	Audio Effects
	Data
	Proposed System
	Results
	Conclusion and future work
	References

