
http://excel.fit.vutbr.cz

Repetitive Substructures for

Efficient Representation of Automata

Michal Šedý*
supervised by doc. Mgr. Lukáš Hoĺık, Ph.D.

Abstract

Nondeterministic finite automata are widely used across almost every field of computer science, such

as for the representation of regular expressions, in network intrusion detection systems for monitoring

high-speed networks, in abstract regular model checking, program verification, or even in bioinformatics for

searching sequences of nucleotides in DNA. To obtain smaller automata, and thus reduce computational

resources, state-of-the-art minimization techniques, such as state merging and transition pruning, are

used. However, these methods can still leave duplicate substructures in the resulting automata. This

work presents a novel approach to automata minimization based on the transformation of an NFA into

a nondeterministic pushdown automaton. The transformation identifies and represents similar substructures

only once by so-called procedures. By doing so, we can further reduce automata by up to 60%.

*xsedym02@stud.fit.vutbr.cz, Faculty of Information Technology, Brno University of Technology

1. Introduction

Nondeterministic finite automata (NFAs), as their

name suggests, can nondeterministically transition

from one state to multiple states based on the same

input. This property allows NFAs to represent lan-

guages more compactly than their deterministic coun-

terparts, which can only be in one state at a time.

Despite their hard minimization, NFAs find applica-

tions in many fields of computer science, such as

representing regular expressions, network intrusion de-

tection systems for monitoring high-speed networks

[1, 2], abstract regular model checking [3], verify-

ing programs that manipulate strings [4], or decision

procedures in the WS1S and WS2S logic [5, 6].

Minimization Techniques

To reduce computational resources when working

with NFAs, it is crucial to reduce their size. For this

purpose, the state merging [7, 8, 9] and transition

pruning [8, 10] techniques are being used. The state

merging technique can merge two states if one of

them fully covers the logic of the other. On the

other hand, transition pruning removes a transition

if there already exists a duplicate transition with the

same logic. These methods are implemented in the

state-of-the-art tool RABIT/Reduce [11].

Repetitive Substructures

Despite the good reduction potential that standard

minimization techniques offer, the resulting automata

can still contain redundant substructures. These au-

tomata often represent regular expressions, such as

those used in network intrusion detection systems

(NIDSs) for network traffic scanning. They are con-

structed as the union of regular expressions. Addi-

tionally, there are types of automata that cannot be

minimized by these standard methods at all.

Our Novel Approach

In our work, we present a novel reduction approach

that involves transforming a NFA into a nondeter-

ministic pushdown automaton (NPDA) that utilizes

a stack. This approach identifies similar substructures

within the automaton and represents them only once

using so-called procedures. The stack is then utilized

to track the states from which the procedure has

been entered and where to return. This transforma-

tion can be likened to converting a purely sequential

program into one that uses functions and a call stack.

By applying our approach to the results of standard

minimization techniques, we were able to achieve an

additional reduction of up to 60% in both the states

and the transitions of the automaton.

http://excel.fit.vutbr.cz
mailto:xsedym02@stud.fit.vutbr.cz


2. Motivation

The automaton representing a regular expression

(.*new XMLHttpRequest.*file://)—(.*file://

.*new XMLHttpRequest) from network intrusion de-

tection system Snort [12] is shown in Figure 1 . Be-

sides the epsilon transitions and .*, this is the most

minimal form that can be achieved by standard min-

imization techniques. This is caused by the lack of

language inclusions as Request and File substructures

are completely different. As a result, the automaton

contains two substructures, each of which has redun-

dant copy, making the NFA representation unefficient.

3. One Procedure No Duplicate

At this point, we identified repetitive substructures for

Request and File, which represent duplicate informa-

tion. Each of these substructures will be represented

by a corresponding procedure. This transformation

into procedures can be seen in Figure 2 .

Entering the Procedure

To recognize if the procedure for Request has been

entered from state 1 as the first part of the regular

expression or from state 6 as the second part, the

symbol 1 or 6 is pushed onto the stack, respectively.

Changing Procedures

When directly transferring from the Request proce-

dure into the File procedure, it is necessary to ensure

that this transition will be used only once and only

after first entering the Request from state 1. This

is done by testing for the symbol 1 at the top of

the stack. If the top matches the required symbol, it

is replaced with the symbol 5 . The same approach

applies for the transition from the File procedure into

the Request procedure.

Returning From the Procedure

Transitions exiting the Request procedure can only

be used when the stack contains the corresponding

symbol that is popped afterward. For the transition

between states 8 and 9, it is the symbol 6 , indicating

that the Request procedure represents the last part

of the regular expression that started with the File.

4. Experiments

We tested our reduction method on parametric and

real-world regular expressions used in network filter-

ing. The highest reductions were obviously achieved

on larger automata, as there is a greater likelihood

of similar substructures existing. Since our tool is

designed to follow after standard reduction methods,

the percentage reduction is calculated relative to the

resulting automata of RABIT/Reduce.

4.1 Parametric Regular Expressions

The set of 3’656 automata, with an average of 207

states and 2’584 transitions, was obtained from four

families of parametric regular expressions [13]. The

reduction ratio of states and transitions can be seen

in Figure 3 . It can be observed that, on average,

our tool achieved a reduction of 52.5% in the number

of states. The x-axis of the graph represents the

size of RABIT/Reduce results (the input of our tool),

while the y-axis represents achieved reduction ratio.

The graph is enhanced with temperature coloring and

a distribution function for each axis.

4.2 Network Intrusion Detection System

To test our reduction algorithm on real-world exam-

ples, seven automata were created as unions of sets

of regular expressions from seven different families of

Snort rules. The results of reduction performed by

standalone usage of the RABIT/Reduce tool (RAB)

and with the additional application of our method

based on procedures (Proc) are shown in Table 1 .

The two most significant results are highlighted. The

best obtained result achieved a reduction of 44.5%

in states and 60.3% in transitions.

5. Conclusion

In this work, we introduced a novel approach to au-

tomata reduction. This reduction transforms NFAs

into NPDAs, noting the similarity with transforming

a pure sequential program into a program with func-

tions and call stack. Applying our reduction approach

to the results of the state-of-the-art reduction tool

RABIT/Reduce resulted in reductions of up to 52.5%

in states and up to 60.3% in transitions. These re-

sults suggest that our approach could significantly

contribute to the reduction of automata in the future.

References

[1] I. Sourdis and D. Pnevmatikatos. Fast, large-

scale string match for a 10gbps FPGA-based

network intrusion detection system. In FPL’03.

Springer, 2003.

[2] M. Ceška, V. Havlena, L. Hoĺık, et al. Deep

packet inspection in FPGAs via approximate non-

deterministic automata. In FCCM’19, 2019.

[3] A. Bouajjani, P. Habermehl, A. Rogalewicz, and

T. Vojnar. Abstract regular (tree) model check-

ing. STTT’12, Apr 2012.



[4] P. A. Abdulla, M. F. Atig, Y.F. Chen, L. Hoĺık,

A. Rezine, P. Rümmer, and J. Stenman. String

constraints for verification. In CAV’14. Springer,

2014.

[5] C. Fu, Y. Deng, D. Jansen, and L. Zhang. On

equivalence checking of nondeterministic finite

automata. In SETTA’17. Springer, 2017.

[6] T. Fiedor, L. Hoĺık, O. Lengál, and T. Vojnar.

Nested antichains for WS1S. Acta Informatica,

2019.

[7] A. Aziz, V. Singhal, R. Brayton, and G.M.

Swamy. Minimizing interacting finite state ma-

chines: a compositional approach to language

containment. In ICCD’94, 1994.

[8] D. Bustan and O. Grumberg. Simulation based

minimization. In D. McAllester, editor, CADE’20.

Springer.

[9] L. Ilie, G. Navarro, and S. Yu. On NFA Reduc-

tions. Springer, 2004.

[10] L. Clemente and R. Mayr. Efficient reduction of

nondeterministic automata with application to

language inclusion testing. CoRR, 2017.

[11] P. A. Abdulla, Y.F. Chen, et al. RABIT and

Reduce. https://languageinclusion.org.

[12] Snort. Snort - Network Intrusion Detection &

Prevention System. https://snort.org.

[13] G. Gange, J. A. Navas, P. J. Stuckey,

H. Søndergaard, and P. Schachte. Unbounded

model-checking with interpolation for regular

language constraints. In TACAS’13. Springer,

2013.

https://languageinclusion.org
https://snort.org

	Introduction
	Motivation
	One Procedure No Duplicate
	Experiments
	Conclusion
	References

