
Repetitive Substructures for
Efficient Representation of Automata

Michal Šedý
supervised by doc. Mgr. Lukáš Hoĺık, Ph.D.

Repetitive Substructures for
Efficient Representation of Automata

Michal Šedý
supervised by doc. Mgr. Lukáš Hoĺık, Ph.D.

Motivation
In many automata, especially those represent-
ing regular expressions, there exist repetitive
substructures that cannot be eliminated us-
ing the state-of-the-art tool RABIT/Reduce [1].
This automaton is depicted in Figure 1 below.

0

start

.*new XMLHttpRequest .*file://

1 2

3 4

.*file:// .*new XMLHttpRequest

5 6

7 8

9

ε ε

ε ε

ε ε

Fig. 1: Automaton with duplicate substructures.

We propose a novel approach based on push-
down automata and so-called procedures, which
represent repetitive substructures only once.

One Procedure No Duplicates
To represent automata efficiently, without duplicate substructures, we in-
troduce a new concept called procedures. Each set of similar substructures
is represented by one procedure. The automaton uses a stack to determine
the state from which the procedure is entered and the state to which it
should return. The symbol on the stack can also serve to guard transitions
that are specific to certain substructures represented by the procedure.

0start

.*new XMLHttpRequest

.*file://

1

2

8

7

5 4

3 6

9

push(1)

if top == 5:

pop(5)
push(2)

if top == 6:

pop(6)

if top == 1:

pop(1)

push(5)

if top == 2:

pop(2)

push(6)

Fig. 2: Automaton with two procedures and no duplicate substructures.

Parametric Regular Expressions
We evaluated the reduction potential of procedures on 3’656
automata, with an average of 207 states and 2’584 transitions,
generated from parametric regular expressions [2].

100 101 102

Number of states after RABIT/Reduce

0.0

0.2

0.4

0.6

0.8

1.0

St
at

e
re

du
ct

io
n

ra
tio

100 101 102 103 104

Number of transitions after RABIT/Reduce

0.0

0.2

0.4

0.6

0.8

1.0

Tr
an

sit
io

n
re

du
ct

io
n

ra
tio

Fig. 3: The reduction ratios achieved by applying procedures to
RABIT/Reduce results. On average, procedures improved
reductions by 50.3% in states and 47.9% in transitions.

The standalone usage of RABIT/Reduce resulted on average
in a reduction of 52.5% in states and 48.4% in transitions.
The further reduction performed by our algorithm can be
seen in Figure 3. The application of procedures reduced the
automata to half the size given by RABIT/Reduce.

Network Intrusion Detection System
To test the reduction capability of procedures in a real-world
scenario, we used rules from Snort (a well-known NIDS). We
generated seven automata, each representing a union of regu-
lar expressions, from seven different categories of Snort rules.

Snort rules Qin δin QRAB δRAB QProc + ΓProc δProc

p2p 33 1’090 32 1’084 25+6 (96.9%) 570 (52.6%)
worm 50 3’880 34 290 24+8 (94.1%) 284 (97.9%)

shellcode 162 3’328 56 579 48+2 (89.3%) 486 (83.9%)
mysql 235 30’052 91 14’430 45+18 (69.2%) 7’142 (49.5%)
chat 408 23’937 113 1’367 71+25 (85.0%) 1’058 (77.4%)

specific-threats 459 57’292 236 31’935 99+32 (55.5%) 12’680 (39.7%)
telnet 829 7’070 309 2’898 155+82 (76.7%) 2’164 (74.7%)

Tab. 1: Reduction results of RABIT/Reduce (RAB) and procedures
(Proc) on seven sets of Snort rules. Q denotes the number of
states δ the number of transitions, and Γ the number of stack

symbols. The percentages refer to the results of RABIT/Reduce.

Among the reduction results in Table 1, we highlighted the
two most significant reductions. The best size reduction was
achieved on the specific-threats rule. RABIT/Reduce
tool reduced the automaton by 48.6% of states and by 44.3%
of transitions. Further application of procedures resulted in
an additional reduction of 44.5% in states and 60.3% in tran-
sitions. This experiment showed that procedures can achieve
significant reductions even in real-world examples.

References
[1]Abdulla, P. A. et al. RABIT and Reduce. https://languageinclusion.org.

[2]Gange, G. et al. Unbounded Model-Checking with Interpolation for Regular Lan-
guage Constraints. In: TACAS’13. Springer, 2013. ISBN 978-3-642-36742-7.

Usage
of a push-

down
autom

aton

and proced
ures is

analog
ous to the

call
stack

and

functi
ons

from

progra
mming

langua
ges.

