
http://excel.fit.vutbr.cz

Maze-based 2D game

Katěrina Čepelková*

Abstract

This project focuses on leveraging the cellular automaton to procedurally generate the mazes. The objective

is to develop an algorithm capable of generating diverse mazes of varying sizes. The created algorithm is

then used in designing a 2D game (in Godot) where the player’s goal is to reach the highest level possible

while navigating through dynamically generated mazes. Along the way, they will encounter various threats

strategically spawned within the maze.

*xcepel03@stud.fit.vutbr.cz, Faculty of Information Technology, Brno University of Technology

1. Introduction

Procedural terrain/content generation is a widely uti-

lized method in game design, used, for example, in No

Man’s Sky, Terraria, or Minecraft. It can save mem-

ory, because there is no need to save pre-designed

maps, and more importantly human labor, as it can

be exhausting and repetitive, so designers can focus

on more critical design problems [1].

This project swiftly generates 2D maze-like maps us-

able in the base game itself, in additional puzzles or

levels. It brings an element of randomness, guaran-

teeing the creation of dynamic and unpredictable 2D

maps of all sizes, ensuring each playthrough offers

a unique experience and challenge.

When generating maps, randomness is essential, but

it needs to be controlled to achieve optimal outcomes.

That is why this project tackles generating using a few

different methods and algorithms resulting in effective

mazes. These are presented in the implemented game,

developed in the game engine Godot 4 using GDScript.

It also addresses the challenge of integrating objects

into the game environment, as the procedural gen-

eration process makes it difficult to distribute them

within the maze.

2. Automation of maze generation

The algorithm chooses the best way to approach

the generation of labyrinths based on their size. Tests

were performed on various algorithm combinations

to determine the most optimal method to generate

mazes of different sizes, based on factors such as

the number of rooms generated or the length of

the longest path within the maze. The tests resulted

in the discovery that groups of mazes of different sizes

needed some different starting matrix or approach

with CA. This commentary focuses on describing

the general approach to the creation.

2.1 General map generation

For achieving diversity in generated mazes the starting

base is a matrix of a given size filled with 1 (wall tile)

and 0 (path tile). This initial setup is facilitated

by Godot native (pseudo)random number generator

which uses PCG32, the result is illustrated in Figure 1.

The distribution of the ratio of generated 1 and 0 is

controlled by modulo operation.

This matrix is then put through a single iteration of

the cave CA, the result is seen in Figure 2, which cre-

ates clusters of 1s (representing walls) which helps to

achieve better outcomes for the second CA. The sec-

ond CA utilized is OCA:Maze/Mazectric with rule

1234/3 [2]. This CA is explosive (most randomly

generated starting patterns will explode in all direc-

tions). Therefore, the clusters formed by the cave

CA serve as optimal seeds for its growth. Although

the resulting maze CA pattern appears maze-like at

first glance, upon closer inspection it reveals corridors

that are not all interconnected, as demonstrated in

Figure 3.

This algorithm resolves this issue by systematically

identifying all groups of 0s, representing paths within

the maze. It then iterates through each group, seam-

lessly connecting them into a single cohesive structure

http://excel.fit.vutbr.cz
mailto:xcepel03@stud.fit.vutbr.cz


by strategically breaking one random wall that sepa-

rates them. This process not only resolves the prob-

lem, it also introduces another element of diversity

to the generation. An example of the resulting maze

is in Figure 4.

2.2 Path finder

The idea to find the start and finish is to find the two

furthest points from each other, but this cannot be

easily achieved when trying to generate quickly. That

is why this project uses the method breadth-first

search (BFS). Firstly it gets the first available path tile

in the matrix from the left-hand corner of the matrix

and finds its furthest path tile. This is the start of

the maze – on this tile BFS is applied again resulting

in the path tile that is set as the finish.

3. Placement of game entities

Ensuring the diverse placement of game entities, such

as enemies and items, requires a specialized algorithm.

The maze layout, start and end path, and difficulty

levels must be considered.

The implemented solution to this problem is rejection

sampling. It creates a matrix of the same size as

the maze with random 1 and 0 (similar to Figure 1) –

this is the sample function/matrix. This matrix with

samples is “placed” on the generated map matrix and

all samples (tiles with value 1 from the sample matrix)

that share coordinates with the path tile in the maze

matrix are taken as potential spawn points for entities.

The list of potential spawn points is then filtered to

remove tiles too close to the start so that the player

won’t have issues with running into the enemy too

soon, and finish tile. This implementation of finding

possible entity spawn points is visualized on Figure 6.

Now the list is shuffled and can be passed on to

the generating function, which chooses the needed

number of tiles to assign to all the required entities.

4. Game and its mechanics

The game is based on simple, skill-based arcade

games, where the player’s goal is to reach the high-

est level with the highest score, such as Pac-Man

or Galaga. The levels are increasing in difficulty and

challenge thanks to the rising size of the generated

maze and the addition of enemies and items (some

of which are seen in Figure 5.

The game offers many types of enemies with diverse

mechanics. Some of them are for example “demon”

enemy, which spawns fire, “goblin” with bow and

arrows, or slime, which slows the player upon contact.

The player’s goal is to survive and reach the end

of the maze in the shortest time, which gets him

into the new level/maze. The score from each level

is based on the level difficulty, the time it took to

complete the level, discarded enemies, and the items

collected. Upon losing all health player loses the game.

Game screenshots are in Figure 7 and Figure 8.

5. Conclusions

The topic of the thesis was to develop a method of

automatic maze generation using cellular automaton

and then implement it into a game. Maze generation

has been developed, tested, and optimized. Thanks to

the usage of CA the results are generated very quickly

which is important when implemented in the game.

The game was created in Godot and its alpha ver-

sion has been tested on volunteers, which brought

important feedback not only for the game but for

generating itself.

Acknowledgements

I would like to thank my supervisor Ing. Michal Vlnas,

for his time and guidance throughout this project.

I am also thankful to all who volunteered to test my

game; their input was invaluable.

References

[1] Zhixuan Wu, Yuwei Mao, and Qiyu Li. Procedural

game map generation using multi-leveled cellular

automata by machine learning. In Proceedings

of the 2nd International Symposium on Artifi-

cial Intelligence for Medicine Sciences, ISAIMS

’21, page 168–172, New York, NY, USA, 2021.

Association for Computing Machinery.

[2] LifeWiki. Oca:maze. online, 2022.


	Introduction
	Automation of maze generation
	Placement of game entities
	Game and its mechanics
	Conclusions
	References

