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Abstract

Partially observable Markov decision process is an important model for autonomous planning used in many

areas, such as robotics and biology. This work focuses on the Abstraction-Refinement framework for

the inductive synthesis of finite-state-controllers (FSCs) for POMDPs. The current AR requires model

checking of a quotient MDP for an entire set of compatible choices of the subfamily in each iteration. We

propose an algorithm, which uses inheritance dependencies to reduce the size of the quotient MDP’s mask

and to accelerate model checking for subfamilies of FSCs. Depending on the POMDP model, we observe

both speedup and slowdown of the overall synthesis. We also introduce a smart version of this algorithm,

which preserves all its advantages and reduces its weaknesses. Our approach significantly improves the

synthesis of FSCs for POMDPs, in some cases up to the factor 6.
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1. Introduction

Markov chains and Markov decision processes offer a

powerful tool for the analysis of stochastic systems

and are used in many areas: robotics (planning strate-

gies for robots, error avoidance), biology (population

extinction, spread of epidemics), finance (currency

market, investment strategies), etc. Partially ob-

servable Markov decision process (POMDP) is a

realistic model, assuming that there is uncertainty

about the effects of actions and the true state of the

world (Figure 1). The resolution of nondeterminism

in POMDP is performed by policies (schedulers).

There are two problems related to POMDP analy-

sis – how to efficiently represent policies and how to

find the optimal one. In this work, we focus on the

synthesis of finite-state controllers (FSCs). They

compactly encode policies, using internal memory

states (Figure 2). Each FSC keeps the policy size

bounded and in most cases, the number of all possible

FSCs is infinite. It makes the problem of finding the

optimal policy undecidable, but real-world tasks often

do not require the optimal solution; one that satisfies

the specification is sufficient.

Inductive synthesis of FSCs is a state-of-the-art

method introduced in [1], which analyses finite fam-

ilies of FSCs by gradually increasing their memory

size. Instead of considering members of the family

separately, abstraction-refinement framework (AR)

for inductive synthesis operates with its abstraction,

represeneted by a single quotient MDP (Figure 4).

The number of refinements (splittings) of the family

into subfamilies depends on the bounds (Figure 3),

provided by model checking of the quotient MDP. Al-

though the abstraction is common for all subfamilies,

model checking is executed for each of them.

In this work, we propose an algorithm, which uses

inheritance dependencies to accelerate model check-

ing of (sub)families of FSCs for AR (IDAR). Model

checking results of a family can be also useful for

the synthesis of its direct subfamilies (children). De-

pending on the topology of the POMDP model, this

approach is able to reduce the model-checking time

on average up to 50%. In some cases, the speedup

reaches 6 times.

2. Proposed method

The main idea is to minimise the need of redundant

model checkings. Quotient MDP for subfamilies is
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just a mask overlaid on the single shared quotient

MDP. Model-checking results of the parent for some

parts of the abstraction can be preserved for children.

Refinement process of the family reduces the number

of available choices by splitting for some parameter

(hole). Let the state be vague, if there is a chance

that its optimal choice from parent’s scheduler is not

optimal for the child. States, which have choices cor-

responding to the selected hole, are marked as vague.

Predecessors of the vague states are also vague. In

vague states, we can not be sure about which choice

is optimal even with the parent’s scheduler, so we

keep all available choices. For non-vague states, there

is no need for model checking and they can be omit-

ted. However, implementation of PAYNT [2] and

Storm [3] requires at least one action in each state,

so we preserve only the optimal choice for non-vague

states in the mask.

In the classic version of IDAR (Figure 5), a state is

considered vague if its (or some of its successor’s)

number of available choices decreased after splitting.

However, it does not mean that its optimal choice

necessarily changed. We developed an extended ver-

sion to this method – EIDAR (Figure 6). Let the

choice be affected if it is optimal for the parent and

either is not available anymore or leads to an affected

state (for the child). Unlike IDAR, a state is affected

if it certainly lost its optimal choice. All optimal and

not available choices are added to a queue Q. Origin
states for every choice in Q are marked as affected.
For each affected state sa, we search through all opti-

mal choices leading to sa and push then into Q. The
algorithm terminates when Q is empty and we receive
a set of affected states. The mask is created similarly

to IDAR. Since we mark as affected only certainly

affected states, their overall number for EIDAR is less

than the number of vague states for IDAR. It results

in the smaller mask and in more accelerated model

checking.

Since described improvements do not speed up the

overall synthesis time for each model, our program

can decide whether to use inheritance dependencies

for each model or not (Smart EIDAR). The main

parameters for such decision are:

1. Percentage of vague/affected states.

2. The average number of choices per vague/af-

fected state.

3. The size of the root family.

Switching between IDAR and EIDAR is computation-

ally complex, since we would need to calculate the sets

of predecessors for IDAR, leading optimal choices and

mapping from choices to states for EIDAR. Therefore,

we consider running 20% or at most 100 iterations

on EIDAR and then possible switching to classic AR,

depending on the described parameters.

3. Experimental results

We have implemented described improvements in

PAYNT using Python and C++ binding for efficiency.

The implementation was tested on a wide range of

models and compared to a classic AR method. The

main evaluation criteria were:

1. Similarity of the synthesis result (identical FSCs).

2. The overall synthesis time, time of model build-

ing (MB, or restricting – applying the mask on

the quotient MDP), model checking (MC).

3. Time spent by (E)IDAR.

Experiments (Table 1) shown that on models with

the large average number of choices per state, small

percentage of affected states and big size of the

root family, both IDAR and EIDAR speed up the

synthesis better than AR. All models, which were not

manually limited by the number of iterations, gave

equal optimal FSCs. Experiments also demonstrated

that increasing memory size results in better speed up

for our methods. A higher number of iterations also

improves the speedup, but for slowed down models it

may further enhance the deceleration.

SEIDAR operates as follows: starting with EIDAR, if

after 20% or at most 100 iterations the percentage

of vague states is greater than 90%, or the average

number of mask choices per vague state is less than

13, or a common logarithm of the size of the root

family is less than 13, we switch to AR.

In refuel-20 without threshold, the synthesis slowed

down by 0.78 and 0.75 times for IDAR and EIDAR,

respectively. SEIDAR managed to increase these

numbers up to 1.32 and speed up the synthesis. De-

spite the different topology of the models, SEIDAR

managed to speed up (or not change) the synthesis

in almost all conducted experiments.

4. Conclusions

The result exceeds our expectations, because in addi-

tion to model checking, other parts of AR framework

are also accelerated. Proposed method significantly

contributes to the speedup of the overall synthesis

time and improves the scalability of the inductive

synthesis.
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