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Abstract

Neural networks (NNs) are becoming increasingly popular. Inference is now performed not only on high-end

GPUs, but also on low-power embedded systems. Small faults in the hardware can lead to critical failures.

This paper explores ways to test fault tolerance on the hardware accelerator of neural networks. We

propose the use of FPGAs to increase the performance of fault tolerance experiments. To achieve this

goal, an open source NN accelerator was used and modified to support fault injection. This solution

provides high speed evaluation without loss of accuracy, as is the case with approximation-based simulations.

Furthermore, an analysis of the fault tolerance of ResNet-18 is presented to demonstrate the proposed

solution.
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1. Overview

Neural networks (NNs) are becoming increasingly pop-

ular and are used in many systems today. Inference

is performed not only on high-end GPUs and CPUs,

but also in low-power embedded systems. Embedded

systems can be sensitive to faults, and in some areas,

such as autonomous driving or automotive systems,

a fault can critical failure. Therefore, the fault toler-

ance of such systems is worth investigating. In the

literature, this property is typically analysed in simula-

tors that lack simulation quality or speed [1] [2] [3].

The aim of this work is to create a real NN inference

accelerator in hardware that supports the emulation

of fault injections.

2. Architecture

The architecture of the accelerator follows the pat-

terns of state-of-the-art accelerators such as EyeRiss

[4] or Google TPU [5]. The NVIDIA Deep Learn-

ing Accelerator (NVDLA) [6] was our choice for the

upgrade. It is a configurable accelerator based on a

grid of processing elements (PEs) that perform the

multiply-accumulate (MAC) operation that is crucial

for NN inference. The architecture of the accelerator

is shown in Figure 1 and 2.

The target platform chosen was the Zynq UltraScale+

XCZU7EV SoC. This hardware limits us to the small

configuration. However, it is still possible to use

the advanced large configuration for more powerful

FPGAs such as Virtex UltraScale. The small con-

figuration allows us to perform inference with 8-bit

data precision, which seems sufficient for the hard-

ware implementations and is widely supported in SoC

accelerators. In addition to an advanced caching

system, the large configuration supports some tech-

niques such as data reshaping, Winograd convolution

or weight compression.

The original NVDLA design targets the ASIC flow,

and some modifications have been made to support

configurable FPGAs. The most advanced part of

the accelerator design was a software stack for the

Linux subsystem. In this work, we adapted the kernel

to support the proposed accelerator. We also used

the Tengine framework [7] to compile the pre-trained

neural network coming from the Caffe tool.

A comparison of ResNet-18 inference performance

on the processor and accelerator is shown in Table 1.

The NN has been quantized to 8 bits. The results on

NVDLA are three times faster than on the CPU.

3. Fault injection

Faults can enter the system in a number of ways.

The memory can be corrupted. This can be easily

emulated by changing a few bits in memory at the
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software kernel level. It is more difficult to emulate the

fault injection in the computational path. We decided

to extend the architecture of the PEs to integrate

the fault injector. There is a grid of 8x8 multipliers

that can produce faulty output. We support the

following fault types: stuck-at (0, 1) and pulse. The

system is able to change the injected value at runtime

without having to restart the system. However, users

can easily implement their own fault injector, e.g.

based on a certain fault probability. The level of fault

injection can be controlled using special configuration

wires (red wires in Figure 4).

4. Results

The ResNet-18 trained on CIFAR-10 was used to

test the fault tolerance of the NVDLA. The neural

network was trained with an accuracy of 75.1%. The

Figure 5 shows the loss of accuracy as a function of

the number of multipliers affected. For example, the

6th and 7th MAC units are more sensitive to error

when only one multiplier is affected by an error that

changes their output to zero.

The faults can only change individual bits at the

output of multipliers. The Figure 6 shows that the

accuracy is negligibly reduced if the LSBs up to the

8th bit are affected. In addition, the neural networks

are more sensitive to changes from 0 to 1 than from

1 to 0.

5. Conclusion

The proposed accelerator supports real-time fault

injection into the NN inference. Although there are

some limitations in the basic pre-trained NNs coming

from the older version of the Caffe framework, the

proposed accelerator can emulate the faults in real

hardware. It allows researchers to investigate the

parameters of the NNs and can help them to make

the NNs more robust.
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