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for Symbolic Regression
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Abstract

This project aims to extend genetic programming to be able to capture more random and outlier values in

the input data than classical genetic programming. This is achieved by extending genetic programming

with a small (associative) memory to store various data points to better approximate the original data

set. The method is evaluated (a) on data sets generated by standard benchmark functions for symbolic

regression but contamined with randomly modified data points, and (b) as an on-chip weight generator for

CNNs capable of reducing the reads from external weight memory. It was shown for some CNN layers that

the method can reduce the weight memory size 24× with a 1.3% reduction in CNN accuracy.
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1. Introduction

Genetic programming (GP) is often used for symbolic

regression to find an arithmetic expression approxi-

mating a given data set with a certain error. The

problem becomes more difficult when the data set

contains many outliers (randomly looking data points)

and one requires to reproduce them with a minimal

error. An obvious solution is to memorize these data

points. We propose genetic programming with mem-

ory (GPM) to address this problem. This approach

builds upon the foundations laid by previous research

presented in [1].

GP is employed to create the mathematical expression

defined by Equation 1 . This can be achieved by

adding memory to the GP as shown in Fig. 1 .

The proposed method is evaluated (a) on data sets

generated by standard benchmark functions for sym-

bolic regression but contamined with randomly modi-

fied data points, and (b) as an on-chip weight genera-

tor for CNNs capable of reducing the reads from exter-

nal weight memory. For testing purposes, Table 1

gives the standard benchmark functions derived from

[2] that were contamined by randomly generated val-

ues. In case of the CNN weight generator, data sets

consist of the weights of particular layers of CNN

Fig. 5 for MNIST [3] image classification.

2. Poster commentary

Cartesian genetic programming (CGP) [4] was used as

the GP method in GPM, see Equation 1 . Fig. 1

presents the entire approach. In addition to the typical

CGP, there is an associative memory (AM) and an

aggregation function (Agg) which creates a key to

the memory based on the input values of the system.

If a value is found in memory for a given key, that

value is used as the output value of the entire system,

otherwise, the value generated by the function found

by the CGP is used. Concatenation, xor or merging

values into different intervals can be used as Agg

functions.

2.1 Matematic functions

To test the proposed method, the functions in Table 1

were contamined with different percentages of ran-

dom values. GPM was then run with the setup:

• size of CGP 20 × 2 nodes
• L-back maximum
• generations 5 000
• population size 5
• number of mutations 2
• propability of mutation in memory 0.2
• propability of constant in CGP 0.1

The function set used in CGP depends on the function

evolved and were, like the function, taken from [2].
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The difference between the correct and generated out-

put is used as the fitness for GPM and the goal is to

minimize this fitness. All experiments were repeated

30×. The results for each benchmark are plotted in
Fig. 3 . Different colors indicate different degree of

contamination by randomly generated values. The

x-axis then shows the different memory sizes where

the memory size is also given as a percentage of the

number of points in each dataset. One can conclude

that adding more memory improves (reduces) fitness.

Fig. 2 shows two solutions for a particular bench-

mark function Nguyen-7. Original data points are

represented by ×. The function depicted in purple
was generated by CGP utilizing no external memory.

The function depicted in blue was generated by GPM

that utilizes small memory to store the data points

depicted with green. It can be seen that GPM better

approximates the points from the dataset.

2.2 GPM as a weight generator

When GPM is used to generate the weights of the

neural network in Fig. 5 , the goal is to reduce the

memory capacity needed to store the weights in ex-

ternal weight memory and thus reduce the communi-

cation overhead. In this task, we will compare GPM

utilizing the standard 32-bit float data type with the

8-bit fixed-point encoding which is more suitable in

the hardware accelerator. The CGP setup is the

same as for the function approximation except the

following:

• size of CGP 20 × 10
• Function set +, −, ∗, %, sin(x), cos(x), ex ,
(32bit) log(x), x2, x3, sqrt(x), tan(x),

tanh(x)
• Function set x, x, max value, min value, x>>1,
(8bit) x>>2, x<<1, x<<2, OR, AND,

XOR, +, −, ∗

For the weight generation by GPM, the associative

memory can be replaced by a cheaper common mem-

ory. The reason is that the weights are always gener-

ated in the same order. As we know when a particular

weight has to be read form local memory (instead of

generating it by evolved expression), we developed a

simple addressing circuit shown in Fig. 4 . to read

from the correct address.

Fig. 6 shows the classification accuracy (y-axis)

when the original weights are replaced by the weights

generated by GPM utilizing a fraction [%] of the

original weights (x-axis). All plots show the original

network accuracy, the accuracy after converting the

network weights to 8bit using quantization, and the

network accuracy if all generated weights were 0.

The first (left) graph shows the results of generating

weights for the first convolutional layer. The second

(middle) graph shows the weight generation for the

second layer and the last (right) graph shows the

combination of the two approaches. We can see that

it is more challenging to find a suitable solution for

the first layer than for the second layer. For the

second layer, the solutions that do not use memory

have similar accuracy as if all generated weights were

replaced by 0.

Let us consider only the expression produced by GPM

generating weights for the second layer, using a mem-

ory size of 10% (here 500 values) and 8bit operations.

This expression can be encoded on 36bits. The ex-

pression together with the 500 weights stored in local

memory (that represent the original 5 000 weights)

can be encoded on 6 660bits. Our approach leads to

a 24.02× memory reduction over 32bit weights, with
a 1.3% decrease in network accuracy.

3. Conclusions

A new approach to genetic programming that uses

memory has been proposed. Several benchmark prob-

lems were used to show how this approach works.

The proposed approach was used to generate weights

for a CNN layer where a memory size was reduced

24× while reducing the accuracy of the CNN by 1.3%.
Better results could have been achieved if a fitness

function that represents the accuracy of the CNN

was used rather than just how similar the original and

generated weights are.
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