
http://excel.fit.vutbr.cz

HyperLTL Model Checking

Ondrej Alexaj*

Abstract

HyperLTL Model Checking is an approach to verify a system against a given hyperproperty. In addition

to expressing a property, HyperLTL allows us to evaluate the property against multiple executions of a

system. Although the algorithmic approach based on automata has been established, it relies on standard

ω-automata operations. The aim of this work is to outperform the complete state-of-the-art HyperLTL

model checker by employing more efficient partial automata operations, particularly the complementation

and inclusion. To achieve this, a novel modular-based complementation state-of-the-art tool has been

leveraged, resulting in significant performance gains on the majority of testing instances. However, the

results indicate the necessity for the development of a more effective inclusion checking algorithm. Finally,

our approach to inclusion checking is also compared with the state-of-the-art tool. As a commonly used

automata operation, our inclusion check could potentially contribute not only to the improvement of

HyperLTL model checking but also to the advancement of other areas of verification.

*xalexa09@stud.fit.vutbr.cz, Faculty of Information Technology, Brno University of Technology

1. Introduction

In the domain of hardware and software systems,

formal verification is the process of proving or disprov-

ing the correctness of a system with respect to a given

property. This is achieved through the use of formal

methods that that provide a mathematical basis for

specifying properties and modeling system behavior.

Formal languages, automata theory and logics are

some of the most important formal methods used in

verification tasks [1, 2].

Model checking [1] is an automated verification method

that systematically checks whether the property holds

in the modelled system or not. The main advantage

of this approach is the ability to provide a counterex-

ample in case the property does not hold.

Hyperproperties were defined by Clarkson and Schnei-

der in 2008 [3] as a set of trace properties. They

point out properties that cannot be formulated as

proper- ties of a single execution. In contrast to

the properties of a single execution trace, which is

satisfied by a trace, a hyper- property is satisfied by

a set of traces. Robustness [4], path planning [5],

generalized non-interference [6] etc. are examples of

such properties.

HyperLTL [7] is an extension of linear temporal logic

(LTL) serving as a formal base for expressing hyper-

properties. An approach oftentimes referred to as

Automata-Based Verification (ABV) [8], has been

established to perform model checking.

Although HyperLTL MC’s ABV approach of Hyper-

LTL MC is decidable [8], it suffer from common

ω-automata problems. The automata op- erations it

consists of are the costliest ones. Namely, it includes

complementation, automata product and inclusion

checking.

In this work, we focus on optimizing the automata

operations within the HyperLTL model checking by

leveraging the more efficient complementation tool

together with the implementation of our own inclusion

check with the goal of generating as few states as

possible.

In addition to being able to outperform the existing

tool for HyperLTL MC, we believe that the techniques

presented in this work can find their usecases in other

formal verification tasks as well.

2. HyperLTL Model Checking scheme

In this section we explain the scheme from Figure 1 .

Let ϕ = Q1π1Q2π2 . . .Qnπn : ϕ
∗, with ϕ∗ denoting

the quantifier-free sub-formula of ϕ and Qi ∈ {∃,∀}

http://excel.fit.vutbr.cz
mailto:xalexa09@stud.fit.vutbr.cz

for all 1≤ i ≤ n. Firstly, a (nondeterministic) Büchi
automaton Aϕ∗ equivalent to the LTL body ϕ

∗ is

constructed. This is accomplished by the standard

Tableau construction that creates automaton ac-

cepting exactly ω-words satisfying the ϕ∗ [9]. This

automaton’s alphabet is Σϕ∗ = (2
AP)n, one set of

atomic propositions for each trace quantifier. The

next step is to inductively eliminate trace quanti-

fiers. Suppose the following sub-formula of ϕ, ψ =

Qkπk : ϕk . We can safely make an assumption that

automaton Ak = (Q,Σ,δ,qin,F) for ϕk is already

constructed (automaton Aϕ∗ being the base case).

Since Qk is the k-th quantifier, the alphabet of

the automaton Ak is Σ = (2
AP)k . Now, if Qk = ∃,

we can perform existential projection, which is intu-

itively the product of Ak and the Kripke structure

K = (S,s0,δ,AP,L), necessary to associate the spec-
ification with the behavior. Formally, we construct

an automaton Ak−1 = (Q×S,Σ
′
,δ
′
,(qin, s0),F ×S)

where Σ
′
= (2AP)k−1 and:

δ
′
((q,s),(l1, . . . , lk−1)) =

= {(r, s ′) | (s,s ′) ∈ δK and
r ∈ δ(q,(l1, . . . , lk−1,L(s)))} (1)

where (l1, . . . , lk−1) and (l1, . . . , lk−1,L(s)) are letters

of automaton Ak−1 and Ak respectively. An intuitive

explanation of this definition is that we read along

both the automaton and Kripke structure, choosing

only transitions that are acceptable with respect to

the current state of the system (Kripke structure).

We, however, omitted the case where Qk = ∀. This
is transformed to the previous scenario using the law

of double negation, i.e. ¬¬∀πkϕk = ∀πkϕk , which
we can rewrite as ¬¬∀πkϕk = ¬∃πk¬ϕk . Here the
negations raise the need for the complementation

procedure of Büchi automata.

After each quantifier is eliminated in the way described

above, we end up with automaton over single-letter

alphabet Σ = (2AP)0. Now we just have to perform

emptiness check over this automaton, meaning that

K |= ϕ if and only if language of the automaton is
non-empty. If the outermost quantifiers are universal,

it is possible to perform an inclusion check between

the Büchi automaton constructed from the Kripke

structure and the Büchi automaton that has been

inductively constructed.

3. Kofola vs AutoHyper

In the Figure 2 we can see a comparison of the

execution times it takes to solve HyperLTL model

checking instances1, where Kofola is not optimized

for inclusion. Specifically, in the Figure 2a , Boolean

programs have been verified against the generalized

non-interference property. Programs that plan robot

movements on plans of sizes 10×10, 20×20, 40×40
and 60×60 are shown in Figure 2b . In these cases
we suffered the most from inclusion. Verification

of Symbolic programs is shown in Figure 2c . A

summary comparison can be seen in the Figure 2d .

4. Language inclusion

We can reformulate the language inclusion problem

of two ω-automata as follows:

L(A)
?
⊆ L(B) ⇐⇒ L(A)∩L(B) ?= ∅,

consisting of common automata operations: comple-

mentation, product and emptiness check. We utilize

several types of simulations to reduce generated state

space as much as possible, as we believe that this is a

way to go in optimizing language inclusion. With these

simulations we are able to state subsumptions (e.g.

implications (1) and (2)) that can decide inclusion

and avoid constructing the entire counterexample,

Figure 3 .

5. Inclusion checker Kofola vs Spot

Although we outperform Spot in the generated state

space (Figure 4 and Table 1), we have not yet

been able to compete in the execution time, due to

Spot being a highly optimized tool and Kofola being

slower at the expense of modularity

6. Conclusions

First, we would like to highlight our success against

AutoHyper on the test instances. In terms of lan-

guage inclusion, we are already able to reduce the

generated state space, but several other optimizations

are in progress and will be integrated into Kofola in

no time.

Acknowledgements

I would like to thank my supervisor Ing. Onďrej Lengál,

Ph.D. for his guidance, help and patience during my

work on this work.

1https://github.com/ondrik/automata-

benchmarks/tree/master/omega/autohyper

References

[1] Miguel E. Andrés. Quantitative analysis of infor-

mation leakage in probabilistic and nondetermin-

istic systems, 2011.

[2] Bernd Finkbeiner. Automata, games, and verifi-

cation, 2015.

[3] Michael R. Clarkson and Fred B. Schneider. Hy-

perproperties. In 2008 21st IEEE Computer Secu-

rity Foundations Symposium, pages 51–65, 2008.

[4] Pedro R. D’Argenio, Gilles Barthe, Sebastian

Biewer, Bernd Finkbeiner, and Holger Hermanns.

Is your software on dope? In Hongseok Yang, edi-

tor, Programming Languages and Systems, pages

83–110, Berlin, Heidelberg, 2017. Springer Berlin

Heidelberg.

[5] Tzu-Han Hsu, César Sánchez, and Borzoo

Bonakdarpour. Bounded model checking for hy-

perproperties. In Jan Friso Groote and Kim Guld-

strand Larsen, editors, Tools and Algorithms for

the Construction and Analysis of Systems, pages

94–112, Cham, 2021. Springer International Pub-

lishing.

[6] D. McCullough. Noninterference and the com-

posability of security properties. In Proceedings.

1988 IEEE Symposium on Security and Privacy,

pages 177–186, 1988.

[7] Michael R. Clarkson, Bernd Finkbeiner, Masoud

Koleini, Kristopher K. Micinski, Markus N. Rabe,

and César Sánchez. Temporal logics for hyperprop-

erties. In Mart́ın Abadi and Steve Kremer, editors,

Principles of Security and Trust, pages 265–284,

Berlin, Heidelberg, 2014. Springer Berlin Heidel-

berg.

[8] Bernd Finkbeiner. Logics and algorithms for hy-

perproperties. ACM SIGLOG News, 10(2):4–23,

jul 2023.

[9] Jean-Michel Couvreur. On-the-fly verification of

linear temporal logic. pages 253–271, 09 1999.

	Introduction
	HyperLTL Model Checking scheme
	Kofola vs AutoHyper
	Language inclusion
	Inclusion checker Kofola vs Spot
	Conclusions
	References

