
http://excel.fit.vutbr.cz

Improving the GraalPy Interpreter

Adam Hrbáč*

Abstract

GraalPy is a Python implementation for the Java Virtual Machine, designed for easy embedding into Java

applications. This is primarily useful for adopting 3rd party Python packages in existing Java codebases.

GraalPy also often has greater performance compared to CPython, the canonical implementation of Python.

This work implements two major features: The async API, one of the last major missing Python features

in GraalPy, used primarily for web development, allowing writing concurrent code without parallelism, using

so-called colored async, where each context switch point must be explicitly annotated. It is composed of

two major parts, a library providing an event loop, as well as the syntactic components of Python, providing

the way with which to indicate context switches. The second feature is a subset of the tracing API, a

CPython API for implementing Python debuggers, used by integrated debuggers in IDEs, coverage tools,

etc. It works by analyzing the Python bytecode in order to determine whether a new line is being executed,

and if so, invokes a registered callback. This callback is also used when returning a value, calling a function

and raising an exception, allowing a debugger to set a breakpoint for these events. Both features are part

of the GraalPy releases and have had a notable benefit to compatibility with 3rd party packages.

*xhrbac12@vut.cz, Faculty of Information Technology, Brno University of Technology

1. Introduction

GraalPy [1], an implementation of the Python pro-

gramming language utilising the language implemen-

tation framework Truffle [2], is designed for embed-

ding Python into Java applications without having

to go through the C APIs of the language runtimes.

In order to maximize the usability of GraalPy, it is

desirable to support as much of Python as possi-

ble. Unlike similar language implementations using

Truffle, notably GraalJS and TruffleRuby, the most

common Python implementation, CPython [3], leaks

its internals, both via the well-supported C API and

the language itself [4], making it almost useless to

implement Python without matching CPython imple-

mentation details as well if the Python ecosystem is

desirable. Since a big reason for embedding Python

into Java applications is being able to use python

packages, the ecosystem is indeed desirable.

There are two major features this work implements

in GraalPy, the first of which is asynchronous pro-

gramming. This allows for writing concurrent code

without parallelism, with the programmer explicitly

syntactically annotating context switches, making it

easier to avoid data races and race conditions. This

requires two separate components, the syntax, pro-

viding the means by which to indicate where these

context switches may happen, as well as async alter-

natives to the for loop and the with statement. The

second part is the library providing the event loop in

which this concurrency occurs. In this work, asyncio

is ported from CPython, being part of the standard

library and the most used library. Since only fairly

small parts of asyncio are written via the CPython

C API, it was not necessary to reimplement the entire

library in Java, only a few key functions. The second

feature is the CPython tracing API, which is primarily

used to implement debuggers, and also backs the

popular coverage.py library. While GraalPy has its

own debugging API provided by Truffle, conventional

editors, such as PyCharm and VSCode have their

integrated debuggers written with the CPython API

in mind, making the API desirable to support, de-

spite being considered a CPython implementation

detail. Although it is not reasonably possible to have

both APIs behave in identical ways, CPython itself

changes the behaviour heavily between minor versions,

therefore minor differences are acceptable.

http://excel.fit.vutbr.cz
mailto:xhrbac12@vut.cz


2. Asynchronous programming in Python

In recent years, asynchronous programming has seen

a rise popularity in the Python ecosystem, primarily

for web-related tasks. The inclusion of asyncio into

the standard library has allowed the ecosystem to

grow to the point when async support (that is, the

support for Asynchronous programming in Python as

implemented in this work) is expected in just about

every relevant library. This has shifted the situation

from async being a weird gimmick for specialised use

cases to being the state-of-the-art way to do web

development in Python. Since running web servers

is a use-case of GraalPy, supporting these libraries is

valuable.

The primary goal of this work is to create a base-

line from which the compatibility with async-related

libraries can be tested. A lot of pure-python libraries

do work fine as is, but Python web servers are typi-

cally not written in pure Python. Especially uvicorn

would be valuable, since it is the most used async

Python web server. Further improvements will be

more related to supporting platform-specific IO ab-

stractions and C extensions than Python features,

since it is now possible to identify these defects.

As GraalPy gets better at supporting the Python

ecosystem, it gets more and more common to run

into popular libraries which do not work due to lacking

async support. This has created issues, since the prior

stubs can often hard crash, which makes running test

suites more difficult than the tests simply not passing.

Thanks to the contributions of this work, async fea-

tures tend to work with no additional changes if the

remainder of the package does. A current example is

Flask, a web framework with async support.

Another interesting aspect is dealing with task-local

(where Task is the unit of concurrency in asyncio)

state. Since each Task spawned from a Task should

inherit the task-local state of the spawning Task, it

must be possible to copy this state in constant time,

and since the context stores variable names, it is useful

to have hashing involved. A specific data structure is

perfect here, a so-called Hash-Array Mapped Trie [5].

As part of this work, the basic implementation of the

standard Python async APIs was merged into the

GraalPy 23.0.2 release. Certain features are missing,

but since these features are either all but impossible,

or debugging tools, they are not a priority. This work

has since been used to improve compatibility with

certain packages, notably httpx and Jinja2.

3. The Tracing API

As was mentioned earlier, making a distinction be-

tween the implementation details of CPython and

Python as the language is not useful for accessing

the Python ecosystem. One of these implementation

details is tracing, a CPython API for implementing

debuggers and similar tools. The goal of this part of

the work is supporting this API in GraalPy.

The primary goal is to create a baseline from which

to improve support for libraries such as coverage.py,

a tool for measuring test coverage, and pdb, the

standard python debbuger, as well as the integrated

debuggers in common Python code editors. This

should allow significantly easier work with GraalPy

in those editors, and saves work on porting Truffle

tooling to each of the editors, which will never be

quite as good as the integrated debuggers.

Due to the recent switch to the bytecode interpreter

in GraalPy, it is possible to implement tracing in a

very similar fashion as in CPython. However, line

numbers are handled differently between CPython

and GraalPy, requiring a more complex computation

on the GraalPy, since only source offsets are stored.

It is impossible to get identical behaviour, since the

bytecode is quite different in places. Nevertheless,

most programs using the tracing API should work,

unless they rely on opcode events – that is, the ability

to trace execution at the CPython bytecode level,

since GraalPy does not use CPython bytecode.

Additionally, the support for so-called debugger jumps

was added, that is, the ability for the debugger to

non-deterministically change the currect executing

line. This could cause interpreter stack corruption in

some cases, so it is necessary to check whether the

jump avoids doing so.

As part of this work, a comprehensive implementation

of the tracing API of CPython was merged into the

release 24.0 of GraalPy. It has since been used to

improve support of GraalPy in various editors, as well

as the test coverage library coverage.py [6]

References

[1] Oracle-Labs. Graalpy. source code.

https://github.com/oracle/graalpython, Ac-

cessed 2023-06-07.

[2] Thomas Würthinger, Andreas Wöß, Lukas

Stadler, Gilles Duboscq, Doug Simon, and Chris-

tian Wimmer. Self-optimizing ast interpreters. In

Proceedings of the 8th Symposium on Dynamic

Languages, DLS ’12, page 73–82, New York, NY,



USA, 2012. Association for Computing Machin-

ery.

[3] Python-Foundation. CPython. source code.

https://github.com/python/cpython, Accessed

2023-06-07.

[4] Armin Ronacher. How python was shaped by

leaky internals. PyCon Russia.

[5] Phil Bagwell. Ideal hash trees. Technical report,

École Polytechnique Fédérale de Lausanne, 2000.

[6] Ned Batchelder. Coverage.py. source

code. https://github.com/nedbat/coveragepy,

Accessed 2024-01-28.


	Introduction
	Asynchronous programming in Python
	The Tracing API
	References

