
JVM

Graalpy

CPython

JVMC ABI

with open(PATH) as file:

 print("About to run", file=file)

 for name in names:

 print("Can't jump here", file=file)

 print("Can jump here", file=file)

log.info("Or here")

Object

Object

Object

IterObject

Improving the GraalPy Interpreter

TracingAsync

Results

JumpsHash-Array Mapped Trie

GraalPy

Adam Hrbáč

switch

...

...

switch

...

...

2

1

3
4

3
4

1

5

5

5

2 3 4

2

switch

...

...
3
4

1+2

5

1

executing

 1 2

optimize

unroll

• Python implementation in Java
• Easy interop with JVM
• Bytecode interpreter
• JIT compilation using the Graal compiler
• Loop unrolling for better compilation
• Not complete, features missing
 - Implemented async and tracing

• CPython debugger API
• De-facto standard for Python debugging
• Also used for coverage
• Callback for each executed line
• Need to detect line execution from bytecode

• IO multiplexing
• asyncio library

- Event loops using select/poll/epoll/...
• syntax
 - Colored functions
 - Alternatives to synchronous constructs - for, with

• 230/308 tracing tests pass
• 121/163 async syntax tests pass
• Flask and httpx work
• pdb can be used to debug code

• Variant of an associative array
• Immutable data structure - copy on write
• Self-balacing tree via hashing
• Used for Task-local state

• Non-deterministic control flow
• Used by debuggers
• Could crash the interpreter
• Avoid by checking
 source and destination

This work was developed under the management of Lukas Stadler
and supervision of David Kozák, as part of my internship at Oracle Labs.

if False:

 print(0)

print(1)

while cond(): body()

;return None

if True:

 print(1)

else:

 print(0)

Figure 1: Schemas of Java-Python interop
with CPython and GraalPy. Figure 2: Partial evaluation of a bytecode interpreter to allow easier optimalization.

Figure 3: Colored functions.

Figure 4: Async for loops.

Figure 5: Async context managers.

Figure 6: Transfer of control flow between coroutines and event loop.

Figure 7: Detecting a new line being executed.

Figure 8: Detecting the same line executed again.

Figure 9: Avoiding lines not actually executed.

Figure 10: Detecting jumps that do not cause a stack underflow.

Algorithm 1: Analysis of bytecode for the types of stack items.

