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Abstract

The aim of this paper is to simulate and render complex real world materials (liquids, gases, wax and other

materials), often referred to as participating media. The priorities of this simulation are both physical

plausibility and computational efficiency. The simulation is implemented using a path tracer for results as

close to photorealism as possible. Inside the path tracer, light interactions are handled using BSSRDF and

all the calculations are highly parallelized using GPU and Vulkan API. Using these techniques, a wide range

of materials can be accurately simulated based purely on their measured light scattering properties. The

output of this work can be used to plausibly simulate complex light transport across different scenes and

materials, be it for scientific reasons or for visual entertainment.
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1. Introduction

With light-speed advancements in computer capa-

bilities, the expectations for what looks realistic are

getting higher and higher as well. The methods for

fast, but still accurate simulations are required to-

day, more than ever. This paper presents one of the

possible ways to meet these expectations.

Light transport simulation in computer graphics was,

for the longest time, quite difficult – even for simple

materials. Nowadays, more computationally intensive

methods are becoming viable for efficient rendering

and advanced phenomena, such as subsurface scat-

tering, can be simulated in a matter of seconds.

Path tracing [1] is generally the go-to approach for

any kind of light transport simulation. The beauty

is in its simplicity – the core algorithm derives from

the behavior of light itself and at a high-level, light

transport can be described by simple laws of reflection

and transmission. Going further, there are more phe-

nomena, mostly coming from the unusual ray-wave

nature of light. Still, the main problem is usually the

volume of computations, not their complexity.

One can imagine the path tracing algorithm as a

wrapper, as its job is barely to send light rays into

the 3D scene and follow them across interactions.

Everything that happens during those interactions,

but also between them, is highly adaptable and varies

field to field.

Bidirectional scattering distribution functions (BSDF)

are used as means to resolve light interactions at the

boundaries of materials. There are many implementa-

tions. Some draw from the original Phong model [2],

others follow more advanced theories, such as micro-

facets [3]. But all of them solve the same core prob-

lem – where the light should continue after interaction

and how it should be affected by the interaction.

The method presented in this paper uses path tracing

with simple opaque interactions handled using the

Lambert model. For the simulation of more complex

materials, subsurface scattering is taken into account,

resulting into a method commonly known as BSS-

RDF. This is one of many steps that can be taken

to improve photorealism.

Inside the medium, four phenomena occur – absorp-

tion, out-scattering, emission and in-scattering, but

the method only takes into account the two former.

While this is a limitation, emission is rare in natural

materials and in-scattering can be closely approxi-

mated with enough out-scattering samples.

2. Path tracer

The path tracer implementation consists of several

parts that can be seen in the Figure 1 . At first, a

light ray is sent from the camera, looking for some-

thing to interact with – a regular solid surface, trans-

missive participating medium or nothing.
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Solid surface interactions are handled with a simple

Lambert BSDF, represented by the term L(xs , ω⃗) in

the part of Equation 1 behind the integral. The

value Tr here represents the transmittance – simply

put, it’s the product of all the medium interactions.

If a medium is hit, we first need to determine if the ray

enters it. That can be done using Fresnel equations.

They give the percentage of light that is reflected

and transmitted, based on the angle of incoming light

and medium properties. We then pick one of the

options on random. The same interaction repeats

upon leaving the medium.

3. In the Media

The transmitted rays enter the medium under the

angle given by the well-known Snell’s law. Inside, a

different kind of interactions occur. First, a path to

the light source is traced, to see if the sampled point

is in shadow or not.

Next, the integral part of Equation 1 needs to get

resolved. To do so, absorption and out-scattering

phenomena, among other things, need to be taken

into account.

Absorption Figure 2a causes the incoming light to

lose some of its properties (mostly color) to the mate-

rial. The absorbance of media is given by absorption

coefficient, normally of spectral value, for the purpose

of rendering defined as RGB value. Absorption affects

how the medium itself is rendered onto the screen. It

follows a simple principle – high red absorption results

into cyan medium.

Out-scattering Figure 2b in some ways is a counter-

part to absorption. The scattering coefficient defines

how much of each color component gets scattered

out of the point. While this has the opposite effect

to absorption – high red scattering results into red

medium, the scattering coefficient also determines

how much light gets through the medium.

Highly scattering media, such as milk, can end up

almost completely opaque. This happens because

scattering coefficient also affects how often medium

interactions happen inside the media. As more in-

teractions occur, the incoming light ray is changed

multiple times. Anything inside or behind the media

is therefore blurry or completely invisible.

Phase function Figure 2c is a probability function

that determines the new ray direction after each of

the medium interactions. Anisotropy of the medium is

taken into account here, weighing the phase function

forwards or backwards. In this simulation, the Henyey-

Greenstein phase function [4] is used.

4. Implementation

The whole method is implemented on the GPU, using

low-level and highly efficient Vulkan API. In graphics

programming using the GPU, memory transfers are

often the most expensive processes. That’s why the

implementation follows a simple schema shown in the

Figure 3 .

First, Vulkan is set up. To speed up this process,

wrapper functions included in Nvidia’s nvpro core

library are used. The setup includes parsing input files

in Wavefront OBJ format into specialized acceleration

structures, optimized for fast ray traversal and also

parsing of JSON file defining the media. One can use

a provided script to create these files, or create them

manually, as they follow a very simple structure.

The acceleration structure data, along with the media

definitions get transferred from host (CPU) to the

device (GPU). On the GPU, the whole path tracer,

including the submodules explained above, is imple-

mented.

While the implementation is used for single renders,

the output is stored in a device-only texture that then

gets copied back over to host. This way, the original

output texture never leaves device, minimizing GPU

downtime and allowing for simple future extensions

to support video and on powerful machines perhaps

even real-time rendering.

5. Conclusions

While the solution produces very plausible results

quickly even on medium tier hardware, the room for

extensions and improvements is big. For example, het-

erogeneous media, where absorption and scattering

coefficients spatially vary, can be implemented. For

even more accurate results with current media, one

could implement various BSDFs for different kinds of

materials (dielectric, metal, etc.).

The renders seen in Figures 4a-c were rendered us-

ing the laptop variant of Nvidia GeForce RTX 3060

graphics card, set up to render at 2048 samples and

tracing up to 32 interactions each.
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