OBLIQUE ELLIPTICAL BASIS FUNCTION - OEBF

Author : Leoš Nevoral

xnevor03@stud.fit.vutbr.cz

Current state

- RBF - uses euclidean distance from the center of neuron as output, neurons have a single weight (radius).
- EBF - calculates normalized distance from the center of neuron, lengths of semi-axis are neuron weights.
- OEBF - improves EBF flexibility with rotation of semi-axis.

Image 1

Proposed solution

- Builds on the foundation of RBF.
- Uses euclidean distance from focal points as output.
- Separates n-dimensional data using ellipse in oblique position.
- The neurons have 2 weights (lengths of main and secondary semi-axis).

$$
u=\sqrt{\sum_{i=0}^{i=n}\left(F_{1 i}-x_{i}\right)^{2}}+\sqrt{\sum_{i=0}^{i=n}\left(F_{2 i}-x_{i}\right)^{2}}
$$

Equation 1
$u \leq 2 a$
Activation function

Weights manipulation

- To shorten semi-axis, focal points of the ellipse need to be moved along the main semi-axis.
- The distance of focal points from the center is called eccentricity.

$$
e=\underset{\text { Equation 2 }}{\sqrt{a^{2}-b^{2}}}
$$

- The eccentricity ratio is utilized to adjust the directional vector from the ellipse's center to its focal points when computing new focal point coordinates.

$$
F_{1}=C+\frac{e_{n e w}}{e} * \vec{v} \quad F_{2}=C-\frac{e_{n e w}}{e} * \vec{v}
$$

Focal points selection
 路

- During learning the first unclassified point is set as first focal point
- The second focal point is the farthest unclassified training vector, with which the ellipses center is unclassified.
rom the ellipse's center

Results

Neurons are compared using Restricted Coullumb Energy Neural Network (RCENN). It's chosen for it's simple learning process, which yields 100% accuracy rate on training dataset. Thus setting a fixed/fair stoping point in learning of each neuron.

