
http://excel.fit.vutbr.cz

Visual Programming of IoT devices

Lukáš Podvojský*

Abstract

There are a lot of different types of IoT devices that use various communication protocols. The lack

of standardization for these devices forces companies to create customized solutions that solve specific

problems. Users are then presented with a predefined functionality that can be only slightly altered. One

of the solutions for this lack of ability for end users to customize device behavior is to give them more

power through the concept that is called visual programming. Users can use visual programming languages

and tools to create programs in an easier and more user-friendly way. Visual programming is supposed to

be easy to use. However, many programming concepts are still present. Therefore, it is expected that

users are willing to learn those basic concepts in exchange for more freedom and power when defining

custom logic. This paper will present a new library that implements a visual programming language and a

visual editor for creating programs intended for IoT devices.

*xpodvo00@stud.fit.vutbr.cz, Faculty of Information Technology, Brno University of Technology

1. Introduction

Many users desire more control when using IoT de-

vices. Also, companies whose domain is IoT need a

way to allow users to define their own logic. Users

of IoT devices can be programmers, hobbyists, do-

main experts, or just common users. It is difficult

to target this broad spectrum with a tool that would

accomplish ease of use but also give users enough

flexibility to customize the behavior of their devices

according to their unique needs or preferences. A

proper tool should be intuitive and easy to use but

not limit users in terms of their capabilities. The goal

is to provide a simple–to–use tool for end users to

create and share custom programs for IoT devices

and a way for companies to integrate this tool into

their existing solutions.

2. State of the Art

Many tools use visual programming concepts in dif-

ferent forms. These tools are called visual program-

ming languages (VPLs), and in most cases, they also

include visual editors, where users can create their

programs. VPLs can be classified into multiple cate-

gories. Kuhail et al. [1] mentions several categories

of VPLs: block–based, icon–based, form–based, and

diagram–based. Remember that VPLs are not strictly

classified and different categories can overlap.

The most popular VPL is Blockly1, developed by

Google and served as a base for other VPLs like

Scratch2, which was built on top of it. Figure 1

shows a simple example of a program created using

the Blockly visual editor. Another popular VPL, espe-

cially in the world of IoT devices, is Node–RED3. As

you can see in Figure 2 , Node–RED is a diagram-

based language that provides users with nodes and

wires to connect them to create a program flow.

Current VPLs often use a canvas where users drag

and drop visual elements to construct a program.

This approach can sometimes introduce more com-

plexity to the users because they are more focused

on where the elements should go rather than on a

core logical problem they are trying to solve. Also,

when a program gets more complex, it is difficult to

navigate it, and users are forced to scroll or zoom

in and out multiple times to get to the part of the

program they want to modify. Moreover, support

for mobile devices or smaller screens in these tools

is fairly limited, considering their popularity among

users. Nonetheless, these tools provide a great and

unique way for users to create their programs and

learn more about programming concepts.

1https://developers.google.com/blockly
2https://scratch.mit.edu/
3https://nodered.org/

http://excel.fit.vutbr.cz
mailto:xpodvo00@stud.fit.vutbr.cz
https://developers.google.com/blockly
https://scratch.mit.edu/
https://nodered.org/


3. Proposed Solution

VPL for Things is a typescript library that allows de-

velopers to implement visual programming language

in their web applications. The library includes a re-

sponsive visual editor for creating programs intended

for IoT devices. This library is only the “front-end”

part of the solution and provides a custom format in

the form of JSON files for sharing created programs

with a backend solution that can then interpret them

accordingly. This allows developers to have broad

customization capabilities on the backend part.

Library architecture can be seen in Figure 4 . The

library consists of multiple graphical components that

create a user interface and modules for working with

a custom VPL data model. The data model is divided

into two main parts: language and program.

3.1 Language and Program

The language data model defines custom language

statements that the user can use and represents the

metamodel of the program. Every statement has its

own visual and other properties, including syntactic

rules, as seen in Figure 5 . The program data model

defines the structure of a program created by the

user.

The language statements are divided into basic state-

ments (if, else, while) and device statements (Cam-

era.takePicture). Because each IoT device has its

functions and attributes, the language is dynamically

created based on which devices are used in the pro-

gram. Both types of statements can be modified

or extended by the developer. Language statements

can be further classified into compound statements

that allow nesting of other statements and statements

that take input arguments of various types. Language

also includes device and user variables that can be

used in statement arguments or when constructing

an expression.

3.2 Visual Editor

Visual editor has two views that users can switch

between (see Figure 6 ). A graphical view shows

a visual representation of the program and is con-

sidered the main working area. A textual view is a

raw program output in a JSON format intended for

more experienced users to take advantage of for rapid

program prototyping. Both views are synchronized,

and changes in one are reflected in the other.

Individual program statements are composed into a

block where they can be added, removed, or moved

into a different position. Statements are grouped by

their functionality and differentiated by color so that

users associate each color with different functionality.

Statement arguments have specified types, so the

user is automatically presented with the correct input

field type. For example, a Repeat statement takes

a number of repetitions as an argument, so the user

is presented with numeric input. The same thing

applies to different types, including a selection from

predefined values.

Users are given the option to create their own vari-

ables (see Figure 7 ) and procedures. This helps

with better program maintainability and clarity. Users

can enter the initial value immediately when creating

user variables rather than setting all the variables by a

dedicated statement. User procedures are important

for abstracting more complicated logic or reusing a

block of statements in multiple places in the program

(see Figure 9 ).

4. Conclusions

The created library achieves the goal of providing

users with a simple tool to define custom logic for

IoT devices and simultaneously allows developers to

integrate this tool easily. However, based on user

feedback, there is room for improvement in user-

friendliness and user help. This tool is more suited for

users with at least essential programming knowledge

who want more control when creating a program

rather than absolute beginners. Further research

on visual programming and end-user development is

needed to better understand how generic or specific

VPLs should be and how much control the end user

should have.

Acknowledgements

I would like to thank my supervisor Ing. Jǐŕı Hynek,

Ph.D. and Ing. Petr John for their help.

References

[1] Mohammad Amin Kuhail, Shahbano Farooq,

Rawad Hammad, and Mohammed Bahja. Charac-

terizing visual programming approaches for end-

user developers: A systematic review. IEEE Ac-

cess, 9:14181–14202, 2021.


	Introduction
	State of the Art
	Proposed Solution
	Conclusions
	References

