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Abstract

LTR retrotransposons are often inserted into one another, which makes them hard to detect. This paper

intends to show that it is possible to use Probabilistic Finite Automata (PFA) to accelerate the computation.

There are several tools that are supposed to detect these transposable elements, but they widely vary in

their runtime, sensitivity, specificity, and capability of detecting nesting. We decided to modify TE-greedy

nester [1] because it is able to locate even deeply nested retrotransposons. To localize a transposon, it is

necessary to detect its structural components, the sequences of which are available in protein databases.

We used the ALERGIA algorithm to learn PFAs representing these databases to efficiently search for these

domains.
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1. Introduction

The genetic information of most eukaryotic organisms

contains transposable elements (TEs) inserted into

the DNA sequence throughout evolution. LTR retro-

transposons constitute approximately 8.3% of the

human genome, as illustrated in Figure 1 . This is a

significant part of the genetic information, compared

to the 1.5% that is constituted by protein-coding

genes [2].

Some retrotransposons may be non-functional or have

neutral effects, others have been found to play a

crucial role in genome evolution and have regulatory

functions, such as controlling gene expression [3]. It

is, therefore, essential to localize them and determine

the order in which they were nested.

The main task is to create a program that, given a

nucleotide sequence as input, is able to find most of

the TEs in a reasonable time. The main complications

are the frequent nesting of TEs and mutations, which

make it impossible to use exact matching algorithms.

Existing tools capable of detecting LTR transposons

include, for example, LTR finder [4], which is relatively

fast but unable to identify nested TEs. Another tool

named RepeatMasker [5] first locates fragments of

structural elements that could be part of a transposon

and then tries to connect closely located fragments

to form a whole TE, thus being able to detect some

nesting. The tool we found the most interesting is

TE-greedy nester. It is able to detect even deep

nesting, but due to the recursive call of the algorithm

on the entire input sequence, it appears relatively

slow.

Since it was found experimentally that more than

80% of the TE-greedy nester’s runtime is taken up

by calling a tool named BLAST, we decided to use

an alternative algorithm based on Probabilistic Finite

Automata that could replace this slow part and thus

speed up the whole process. We assume that replac-

ing the BLAST tool with the PTA-based algorithm

could significantly speed up the TE-greedy nester

and enable the search for transposons even in longer

sequences.

2. LTR retrotransposons

LTR retrotransposons are a type of TE that make

up a significant part of the genome of many species.

They consist of two Long Terminal Repeats (LTRs),

typically 250–600 bp in length, at both 5’ and 3’

ends of the retrotransposon, as shown in Figure 2 .

Between these two LTRs is a coding region, approxi-

mately 5–7 kb long, that contains at least two genes,

gag and pol, but the number can vary depending on

the type of transposon. These genes encode proteins

such as protease (PR) and reverse transcriptase (RT),
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which are necessary for the transposon to replicate

and move along the host DNA [6].

3. TE-greedy nester

TE-greedy nester is a command line tool that is able

to detect even deeply nested LTR retrotransposons.

Since older transposons are often fragmented by later

inserted transposons, as shown in Figure 3 , the pro-

gram first locates the newest TE, which is then cut

out of the original sequence, and the algorithm is

repeated until no other transposon is found. This

algorithm is described in Figure 4

Since it was found experimentally that more than

80% of the TE-greedy nester’s runtime is taken up

by calling a tool named BLAST, we decided to use

an alternative algorithm based on Probabilistic Finite

Automata that could replace this slow part and thus

speed up the whole process. We assume that replac-

ing the BLAST tool with the PTA-based algorithm

could significantly speed up the TE-greedy nester

and enable the search for transposons even in longer

sequences.

4. Probabilistic Finite Automata for se-

quence comparison

Although it is not possible to use exact matching

algorithms to determine whether a particular sequence

might be the desired protein due to naturally occurring

mutations, we can use Probabilistic Finite Automata

(PFA) to describe the character of an entire set of

sequences and then introduce some randomness by

merging similar states. That can be achieved using

the ALERGIA algorithm, which uses Inequation 1

to determine whether to merge two states.

4.1 Translation of amino acids into equivalence

classes

Amino acids, the basic building blocks of proteins, can

be divided into several groups according to their prop-

erties, such as polarity or acidity. The substitution

of an amino acid with another amino acid from the

same group may lead to a conservative replacement.

It has been proved that these mutations are much

more frequent because they do not cause a significant

change in the functionality of the protein [7]. One

of the possible divisions into equivalence classes is

shown in Table 1 .

Because the original ALERGIA algorithm did not

prove to be very effective for this application, the

same method of transcoding amino acids into these

equivalence classes was used as in the master’s thesis

DNA Sequence Representation by Use of Statistical

Finite Automata [7]. Thanks to this modification,

we were able to identify approximately 80% of the

sequences encoding the gag gene while maintaining a

low number of false positives.

4.2 Dealing with non-determinism

Currently, our tool is only able to recognize sequences

that exactly correspond to the given protein. In order

to identify genes that are part of a longer sequence,

the automaton, which is the output of the ALERGIA

algorithm, must be modified. The modification is

illustrated by Figure 5 . It is necessary to add two

more states, one at the beginning and the other at

the end of the automaton, whereby both will read

any symbol from the input with probability one so as

not to affect the probability of the given string. The

first state will be used to read the characters before

the given gene and then non-deterministically go to

the original initial state. The last state only serves

to read the rest of the given string. Unfortunately,

the resulting automaton is no longer deterministic,

so a more complex algorithm will have to be used

to determine the probability of a given string. It

will be necessary to continuously store all possible

configurations of the automaton and select those

with the highest probability.

5. Conclusions

This paper showed that it may be possible to use the

ALERGIA algorithm to learn a PFA representing a

protein database and then search for LTR transposon

domains in a query sequence using this automaton.

To prioritize conservative replacements, which are

much more frequent, we encoded the amino acids

into classes of equivalents according to their proper-

ties. In future work, we would like to focus on the

implementation of the extended PFA so that it can

also accept sequences that contain the given domain

as a substring and determine its exact position. We

plan to integrate our code into the TE-greedy nester

and test whether there was a significant acceleration

of the algorithm.
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