
http://excel.fit.vutbr.cz

Overfloat - an Overlay System for Windows and Linux

Jakub Šediba*

Abstract

While using the computer, many use cases depend on or would greatly benefit from easy access to

information from external sources. This often leads to a lack of desktop real estate and the necessity to

constantly switch between active windows, especially if only a single monitor is used. My thesis aims to

combat this problem, while adding partial automation support, by providing a system for the creation of

modular overlay-based extended user interfaces. This system, which is useable on Windows and Linux

operating systems, consists of an API that exposes the features to module creators and an app that

controls the modules. The created system allows module creators to develop multi-window modules using

TypeScript and the React library. The main distinguishing features are the ability to bind actions to

hotkeys, which can be triggered even when the module window isn’t focused and the ability to monitor

folders or files while triggering a callback when changes in them occur. With this system, users can create

widget-like applications using web technologies, but not necessarily requiring internet access. All of this

can be achieved without having to deal with direct interactions with the operating system.

*xsedib00@fit.vutbr.cz, Faculty of Information Technology, Brno University of Technology

1. Introduction

Several different computer use cases greatly benefit

from access to information from external sources

and automation. The one that was my biggest inspi-

ration when developing this system was video games.

Over the recent years overlay applications offering

this kind of functionality, such as Overwolf1, gained

quite a bit of popularity.

My goal was to develop a more approachable system

that would allow users to create multi-window mod-

ules to present information and provide a certain level

of automation. These modules can then be freely

combined to provide an extended user interface

displayed in windows floating above the main active

window.

The market for these kinds of systems is mainly dom-

inated by the earlier-mentioned Overwolf, which in-

cludes a store2 with a plethora of overlays for many

different games. I was however dissatisfied with the

lack of a Linux version of this program and the in-

stability and performance issues caused by its use of

1https://www.overwolf.com/pages/homepage/
2https://www.overwolf.com/apps/

Electron.js3. This led to my choice of developing a

cross-platform alternative.

With a system like this, window management support

is a necessity. Other than this, I’ve decided to imple-

ment several other features, that make this system

useable in more cases. These features include the

support for global hotkeys, manipulation of the filesys-

tem and clipboard, input simulation, and monitoring

of the filesystem. A profile system that allows users

to save multiple window layouts and keybind settings

is also included.

2. Architecture

Using a hybrid approach to cross-platform develop-

ment makes it possible for the modules to be devel-

oped using JavaScript and TypeScript, which rank

highly on the programming language popularity in-

dexes [1, 2]. This combined with the need for cross-

platform compatibility, led me to choose Tauri4 as a

framework for this system.

While Tauri is simlar to Electron.js in principle, it re-

3https://www.electronjs.org/
4https://tauri.app/

http://excel.fit.vutbr.cz
mailto:xsedib00@fit.vutbr.cz
https://www.overwolf.com/pages/homepage/
https://www.overwolf.com/apps/
https://www.electronjs.org/
https://tauri.app/


places of the traditional Node.js5 runtime environment

with a custom Rust-based one [3], which should lead

to better performance. The other benefit of Tauri

is that it uses platform native browser engines [4]

instead of bundling the Chromium core to every in-

staller [5].

While Rust allows developers to use of the Cargo

package manager and its library of Crates6, the com-

paratively younger ecosystem lacks implementations

of key functioanlty that are easily found in Node.js.

The final architecture of the system is displayed in

Figure 1 . It consists of four main parts: the Rust

backend, the main app, the API, and the user-made

modules.

The Rust backend is the part that interacts with

the operating system. It implements the capturing

of global keypresses, filesystem manipulation, input

simulation and filesystem monitoring.

The main app handles the routing and profile manage-

ment. It also holds information about active modules,

their windows and shortcuts, that can be bound to

hotkeys. The app provides a graphical user interface

that allows users to start and stop specific modules,

hide or show windows, change profiles and configure

bound keys.

The API provides methods to implement the features

of this system into modules. Some of these methods

interact directly with the Rust backend, while others

interact with the module and keybind managers in

the app window.

This provides the support foundation that lets the last

part of the architecture, the user-created modules,

shine. These modules are developed in structured

directories and consist of a main window and any

number of subwindows. The structure of a module

directory is illustrated on Figure 2 . The windows

of a module are represented by React7 components,

which have to be the default exports of the files they

are implemented in.

The root of the module directory must contain specif-

ically one TSX file representing the main window.

Subwindows are represented by TSX files located in

the subwindows subdirectory inside the module direc-

tory. All other TSX files must be located in different

subdirectories inside the module directory.

This structure allows for filesystem-based routing

to be used, which means that the creation of modules

5https://nodejs.org/en
6https://crates.io/
7https://react.dev/

does not necessitate changes in the code outside of

the module itself.

3. Module Examples

Multiple modules were developed to showcase the

features of this system. Two of them are shown in

Figure 3 and Figure 4 .

Figure 3 shows a directory monitoring module. This

module is designed to display all of the changes that

happen in a selected directory using the filesystem

monitoring feature. In this example, a test run of an

image-generating program is shown. The notifications

are displayed in chronological order from the most to

the least recent.

Icons and colours are used to differentiate between

different types of events. In this example, you can

see file and folder creation and deletion events, file

content modification events and file relocation events.

Figure 4 shows a module designed to assist the

user with trading in the online game Path of Exile8.

This module uses the filesystem monitoring feature to

get information about incoming trade requests from

the chat log of the game. These trades are then

displayed in the cards showing the requested items

and the items offered in exchange.

These cards also contain buttons to quickly invite

the other person into the user’s party, open the trade

window with them, or cancel the trade request. The

user can also bind hotkeys to the actions tied to these

buttons for an even smoother experience.

4. Conclusions

Overfloat is an accessible solution for your over-

lay needs on Windows and Linux operating systems.

From displaying the contents of a website in a mod-

ified way to automation and filesystem monitoring,

I believe a lot of people will find a use for this system.

If this system interests you, you can find out more on

the GitHub repository9.

Acknowledgements

I would like to sincerely thank my supervisor Ing. Jǐŕı

Hynek Ph.D. for all their help. Their unending will-

ingness to discuss my problems helped me make this

system as good as I could.

8https://www.pathofexile.com/
9https://github.com/jsediba/overfloat

https://nodejs.org/en
https://crates.io/
https://react.dev/
https://www.pathofexile.com/
https://github.com/jsediba/overfloat


References

[1] PYPL. Pypl index. https://pypl.github.io/

PYPL.html, 2024. Accessed on the 19th of June

2024.

[2] TIOBE Software. Tiobe index. https://www.

tiobe.com/tiobe-index/, 2024. Accessed on

the 19th of June 2024.

[3] Tauri Contributors. Architecture. https://

tauri.app/v1/references/architecture/,

2024. Accessed on the 19th of June 2024.

[4] Tauri Contributors. Webview versions.

https://tauri.app/v1/references/

webview-versions, 2023. Accessed on

the 19th of June 2024.

[5] Electron. Electron documentation. https://www.

electronjs.org/docs/latest/. Accessed on

the 19th of June 2024.

https://pypl.github.io/PYPL.html
https://pypl.github.io/PYPL.html
https://www.tiobe.com/tiobe-index/
https://www.tiobe.com/tiobe-index/
https://tauri.app/v1/references/architecture/
https://tauri.app/v1/references/architecture/
https://tauri.app/v1/references/webview-versions
https://tauri.app/v1/references/webview-versions
https://www.electronjs.org/docs/latest/
https://www.electronjs.org/docs/latest/

	Introduction
	Architecture
	Module Examples
	Conclusions
	References

