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Abstract

Regular model checking is an automata-based technique used for verification of infinite-state systems. The

configurations of a system are encoded as a finite automaton and transitions between these configurations

as a finite transducer. A technique for verifying arbitrary properties of parameterized systems specified

in a temporal logic LTL(MSO) has already been introduced. We present an extension of this algorithm

allowing verification of hyperproperties of parameterized systems where an explicit quantification over

multiple execution traces is allowed. The technique presented in this work is implemented in our tool

ParaHyper.
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1. Introduction

Model checking is an important method for verifying

finite-state systems. However, many real-life systems

whose properties we would like to examine can have

potentially infinite number of states. Verification of

such systems has been an important area of research

in the past few decades. One of the techniques

that allow us to deal with parameterized and infinite-

state systems is regular model checking [1, 2, 3, 4,

5]. In regular model checking, the states of the

system are represented as finite words of arbitrary

length over a finite alphabet. The sets of initial

states is represented as a regular set of strings, and

the transition relation is given as a finite regular length-

preserving transducer.

When checking if a system satisfies some property, we

would like to describe this property in some formalism.

For systems that are not expected to terminate and

can have possibly infinitely long runs (e.g. operating

systems), temporal logics like LTL or CTL are usually

used. In the case of finite-state systems, one of the

approaches we can use to check if a system meets

its specification given in LTL is to represent both

the system and the property by a Büchi automaton

and then check their language inclusion. However,

verifying properties of parameterized and infinite-state

systems is not as straightforward, because we cannot

represent a system with infinitely many states using

a finite-state Büchi automaton.

An extension of the automata-theoretic approach to

regular model checking of parameterized and infinite-

state systems has been proposed in [6]. The authors

presented a logic LTL(MSO), which is a combination

of the logics MSO over finite words for specifying sets

of states and transition relations, and LTL for specify-

ing temporal constraints. The models of LTL(MSO)

are infinite sequences of words of constant length

that represent computation of the specified system.

The verification problem then consists of checking

whether the conjunction of a system specification and

a negation of the property to be verified is satisfiable.

The aim of this thesis is to extend the regular model

checking algorithm of LTL(MSO) to an algorithm

allowing quantification over execution traces, i.e., to

be able to verify hyperproperties [7] in parameterized

and infinite-state systems.

2. LTL(MSO)

LTL(MSO) is a two-dimensional logic for specifying

properties of parameterized systems. MSO (Monadic

second-order logic) is used for specification of system

configurations and LTL (Linear temporal logic) is

used for specification of temporal properties of the

system. Models of this logic are infinite sequences of

constant-length words.

3. Hyperproperties

The temporal logic LTL implicitly quantifies over only

one execution trace. HyperLTL [8], an extension of
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LTL, allows explicit quantification over multiple traces.

One of the properties that can be expressed in Hy-

perLTL but not in LTL is observational determinism.

This property states that there is an identical output

across all traces of the system and no information

about high-security input is therefore leaked.

4. Verifying Hyperproperties

We present a logic HyperLTL(MSO) which is an ex-

tension of a logic LTL(MSO) allowing explicit quan-

tification over multiple traces. In order to be able to

represent hyperproperties, we need to use multitape

automata and transducers. Every tape of an automa-

ton represents one trace quantified in the formula.

We can therefore keep track of current configurations

of all traces at a certain timepoint.

5. Extending the System with Configuration

Variables

A technique for representing all accepting runs of

a system with respect to a formula in LTL(MSO)

as a Büchi regular transition system has been pro-

posed in [6]. We use the same technique to transform

a body of the HyperLTL(MSO) formula without trace

quantifiers. The body of the formula is translated

into Büchi normal form which introduces new con-

figuration variables in the formula. This formula can

then be translated into an automaton representing

restrictions on initial configurations, and transducers

for restrictions on all system transitions and accepting

transitions.

6. Generating Advice Bits

In [9], the authors presented a fully-automatic method

for proving liveness over randomised parameterised

systems using SAT solvers. The problem of liveness is

transformed into looking for a pair of a finite automa-

ton and a finite length-preserving transducer satisfying

some conditions. The requirements on this pair are

translated into a set of clauses and looking for an au-

tomaton and a transducer corresponds to generating

models of the formula by a SAT solver and checking

if they satisfy given conditions. Our approach was

inspired by this method, but it was extended to au-

tomatically prove not only liveness, but an arbitrary

formula in HyperLTL(MSO). The approach for com-

puting advice bits consists of two steps – synthesis

and verification. During synthesis, the pair ⟨A,≺⟩ is
generated by a SAT solver. In the verification phase,

it is checked whether ⟨A,≺⟩ satisfies conditions for
advice bits. If the conditions does not hold, another

pair is generated. The generated automata have nA

and n≺ states, respectively. These parameters are

initially set to 1 and then are increased. In this sec-

tion, we describe how to encode a finite automaton

or a finite transducer into a boolean representation

for a SAT solver.

7. Implementation

The algorithm presented in this work is implemented

in the tool ParaHyper1. On the input, the tool takes

a HyperLTL(MSO), a finite automaton representing

initial configurations of the system, a finite length-

preserving transducer representing transitions of the

system, and a bound on the number of states for the

advice bits.

8. Conclusions

We presented an algorithm for regular model checking

of an arbitrary formula in HyperLTL(MSO). This

approach is implemented in the tool ParaHyper and it

uses SAT solver for the generation of candidate pairs

of advice bits.
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