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Abstract

This article discusses the use of graph neural networks to decrease the number of false positives from

static analysis, specifically targeting the high rate of false positives produced by the Meta Infer static

analyser—over 95%. The proposed solution involves two main pipelines: a Training Pipeline that converts

the D2A dataset—a set of labeled Meta Infer’s reports—into extended code property graphs on which the

models are later trained, and an Inference Pipeline that integrates the trained models into practical software

analysis. Preliminary results are encouraging, showing that our GNN model, with an AUROC of 0.84, is

competitive with some other models being developed by strong industrial teams. Notably, while other

existing solutions in this field are closed source, our GNN model offers a promising open source alternative

even in the current stages of architecture selection and hyperparameter tuning. The article highlights

the potential of GNNs in effectively ranking false positives, thus enhancing the utility of Meta Infer. It is

also planned to open source the entire framework, contributing to broader research and applications in

vulnerability detection and false positive reduction tasks.
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1. Introduction

[Motivation] Static analysis is commonly used in soft-

ware development to detect various kinds of errors

and vulnerabilities, leveraging its ability to consider

all possible program paths and uncover even rarely

manifesting errors missed by tests. However, its ma-

jor drawback is the high number of false positives

(i.e. false alarms). This work focuses on Meta Infer,

a static analyzer whose results contain over 95 % false

positives [1, 2]. The frequent need to verify these

false positives often leads developers to disregard the

results of static analysis. The aim of this article is

to enhance the utility of Meta Infer by ranking the

errors detected by Infer based on their likelihood of

being true positive (i.e. not a false alarm).

[Existing solutions] There has already appeared previ-

ous attempts to use ML to reduce the number of FPs

in Infer. Most notable models are from the creators

of the D2A dataset (used in this article), specifically

the C-BERT [3] and vote [2] models. The latest

vote-new [3] model achieves nearly perfect scores on

smaller projects, but this score declines as the number

of samples in the project increases. Unfortunately,

these models are closed source, and thus it is not

possible to verify the results or use the models.

[Proposed solution] The solution proposed in this

article is based on deep graph neural networks (GNNs).

However, since the D2A dataset is not in a graph

format, it was first necessary to create a pipeline for

its transformation. Additionally, another pipeline was

developed to generate graphs from real C software

based on Infer reports, and apply the created model

to them. All components will be open sourced.

[Contributions] This article consists of several parts

and thus has multiple different outputs. Arguably, the

main output is the Training Pipeline and the Graph

D2A it creates—a graph version of the D2A dataset.

Another output is the Inference Pipeline, which

can apply Infer with GNN models to real C software.

Both pipelines improve existing methods by gener-

ating graphs from the C language using conditional

compilation, which is very important for real-world

software. Last but not least, the output includes the

trained model itself. The models are still in the phase

of architecture selection and hyperparameter tuning,

however, initial experiments are already achieving very

promising results with an average AUROC of 0.84.
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2. System for False Positive Filtering

The proposed system for reducing FPs in Infer uti-

lizes GNNs, which achieve top results in the field

of vulnerability detection [4]. The choice of GNNs

is also based on the fact that many characteristics

of source code can be naturally represented us-

ing graphs—for instance, abstract syntax trees or

control flow graphs are used in compilers, underscor-

ing the usefulness of these representations. Another

advantage of GNNs is that they inherently handle

arbitrary input size, which is not the case with, e.g.,

the C-BERT model, leading to some difficulties [3].

The D2A dataset [2] contains reports from 6 real-

world software from Infer. Since D2A was created

automatically, the labels do not have 100 % accu-

racy. D2A is in a text format and is thus incompatible

with GNNs. Therefore the proposed system includes a

Training Pipeline that converts D2A into its graphical

counterpart—Graph D2A. To facilitate the deploy-

ment of models on real projects, an Inference Pipeline

was also created, capable of running Infer on any

C project and applying the models to its output.

2.1 Training Pipeline

The input to the Training Pipeline (see Figure 1 ) is

the D2A dataset and the repository on which D2A

was created. Using information from D2A (bug trace,

compilation commands, etc.) and code from the

repository, LLVM IR—a language-independent inter-

mediate representation—is generated for each sample.

The conversion to LLVM IR has several reasons:

1. the compilation resolves macros, which exist-

ing approaches ignore [5, 6, 4, 7, 8] because

they rely solely on the Joern tool,

2. LLVM IR is a simpler language, therefore the

graphs are less complex, though larger,

3. there are numerous tools available for convert-

ing LLVM IR into various graph formats.

The generated LLVM IR is then sliced by LLVM

Slicer based on slicing criteria extracted from D2A.

Subsequently, a code property graph (CPG) is cre-

ated—a frequently used representation (and its mod-

ifications) in vulnerability detection [4, 9, 8]. The

binary CPG is enhanced by the Joern tool to include

a call graph, data types, etc. For each D2A sample,

a CPG with this additional information is generated

and stored in a CSV format as Graph D2A. These

graphs, however, require data preprocessing accord-

ing to the chosen ML library. In this work, we chose

TFGNN. Preprocessing thus involves applying fea-

ture engineering and converting the samples into the

commonly used tfrecords format. Feature engineer-

Table 1. Model comparison based on the AUROC.

libtiff nginx httpd
our GNN 0.84 0.88 0.74
vote[2] 0.89 0.77 0.77
C-BERT[3] 0.94 0.89 0.82
vote-new [3] 0.98 0.93 0.90

ing is a crucial phase of the Training Pipeline—its

successful execution can significantly reduce the

graphs and eliminate useless and redundant data,

thereby facilitating learning. Conversely, a flawed

design can prevent training altogether. Feature engi-

neering transforms raw graphs into a format that we

will refer to as extended code property graphs.

2.2 Inference Pipeline

The Inference Pipeline relies primarily on compiler

wrappers that were designed in the author’s bache-

lor’s thesis [1]. These capture compilation commands

and use them to run Infer while also generating LLVM

IR. The rest of the Inference Pipeline (see Figure 2 )

is fundamentally the same as the Training Pipeline.

3. Experiments

Our model is still in the early stages of its devel-

opment, with various architectures being tested and

hyperparameters being tuned. However, it is possible

to demonstrate the capabilities of the best model so

far (see Figure 3 ). This model has been trained

on projects libtiff, httpd, and nginx (part of D2A).

Figure 4 shows the ROC curves for the individual

projects. Table 1 compares models from [2, 3] with

our GNN. It is evident that vote-new and C-BERT

perform better across all tested projects. However,

our GNN is comparable to the older vote, which

indicates that GNNs are a promising approach for

reducing FPs. Figure 5 shows the results for the

intended use-case of these models—precision for the

top N% of reports. E.g., for the top 5% ranking

increased the precision ∼6x.

4. Conclusions

The experiments show that our model currently only

matches the performance of older vote models. How-

ever, these are only initial models, which suggests

that GNNs are certainly suitable for reducing FPs.

Also, existing models are closed source, making even

the current GNN model a very good open source al-

ternative. This article presents not only the model

but also Graph D2A, which facilitates the training

of GNN models for future research in FPs reduction.

Additionally, the Inference Pipeline significantly eases

the deployment of future models.
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