
Filtering False Positives from Static Analysers
Using Graph Neural Networks
Author: Bc. Tomáš Beránek Supervisor: prof. Ing. Tomáš Vojnar, Ph.D.

Email: xberan46@stud.fit.vutbr.cz
The presented system was
developed with financial
support from Red Hat.

Motivation Proposed Solution Overview

Why use GNNs?

Inference Pipeline

GNN Architecture

Experimental Evaluation

Why represent source code with ECPGs?

Training Pipeline

Static analysis is commonly used in software development to detect vulnerabilities and
errors, leveraging its ability to consider all possible program paths and uncover even rarely
manifesting errors missed by tests. However, its major drawback is the high number of false
positives. This work focuses on Meta Infer, a static analyzer whose results contain over 95 %
false positives. The frequent need to verify these false positives often leads developers to
disregard the results of static analysis. The aim of this project is to enhance the utility of
static analysis by ranking the errors detected by Infer based on their likelihood of being real.

• The architecture of the best-performing model includes Albis GNN layers.

• The "head" of the model combines outputs from GNN layers with context features.

• Node features of the input graph are used to initialize hidden states.

• The model operates over heterogeneous multigraphs, specifically ECPGs.

• The models are currently in the phase of architecture selection and
 hyperparameter tuning.

• Nevertheless, results from the currently best model, whose architecture is
 described above, are available.

• This model was trained on the httpd, libtiff, and nginx projects.

• Results were generated using test data from these same projects, thus this
 constitutes a form of self-analysis.

• A realistic use-case scenario for this test data would look as follows:
 - Take, for example, 5 % (182 samples) of the top samples:
 - (without ranking) only 5 samples would be TP,
 - (with ranking) 29 samples would be TP, which is ~6x increase.

• Code properties, such as syntax or control flow, are best expressed with graphs.

• Graphs like AST and DFG are essential for various compiler tasks, proving their usefulness.

• GNNs achieve top results in tasks involving error and vulnerability detection.

• GNNs handle variable input sizes, which can pose problems for other NN architectures.

• Numerous tools exist for transforming source code into graph formats.

• GNNs are trained on Extended Code Property Graphs (ECPG).

• CPGs are commonly used for vulnerability detection tasks.

• ECPGs enhance CPGs by incorporating data types, Call Graphs, and more.

• Various tools can generate CPG graphs from various languages.

The proposed system uses deep graph neural networks (GNNs) for ranking Infer outputs,
utilizing the D2A dataset, which is not originally in graph format. The project involves
creating a Training Pipeline to develop Graph D2A—a graph version of the D2A dataset for
GNN training. It also includes trained models for ranking Infer outputs and an Inference
Pipeline to generate graphs from real-world programs using Infer outputs, enabling fully
automatic operation and ranking of reports for real-world C programs.

Figure 1: Training pipeline diagram.

Figure 2: Inference pipeline diagram.

Figure 3: Model architecture diagram.

Figure 4: Figure 5:

