
http://excel.fit.vutbr.cz

Blender Add-on For Conversion of Nodes to Vector

Graphics

Filip Dráber*

Abstract

This project implements a tool that enables users of the Blender 3D modelling software to quickly and

easily export Node Graphs – Blender’s abstract visual programming tool – to a vector representation.

This means the user does not need to take a screenshot of their work, which is considered poor practice

for technical writing. The add-on parses data of the current Blender project and constructs an SVG

document defining all the necessary graphical elements. The aim is to create SVG representations that

allow users to re-create the graphs in their own editor. The individual images on the output are designed

to hold the necessary informational value to recreate Node Graphs in a different editor, even if they are not

pixel-perfect. Certain elements of various Nodes are dropped while others are enhanced to deliver all the

necessary visual information which Blender would not display at once. While the add-on is still undergoing

testing and feedback-driven updates, it is already used to its desired goal: exporting user-created Node

Graphs for presentation purposes as part of their articles and theses.

*xdrabe09@vutbr.cz, Faculty of Information Technology, Brno University of Technology

1. Introduction

Blender is a multi-purpose editor for almost anything

related to 3D modelling and visualisation. Its Node

Editor environments make for an excellent tool to

simplify difficult concepts through visual programming

(a method of using visual elements to let users create

and customize applications [1] (Section II) and data

flows, similar to Unreal Engine’s Blueprints). They

are mainly used for defining material properties, 2D

composition and scene geometry, and the user-defined

Node Graphs are an important element of any Blender

work, be it leisure, academic, or professional.

[Motivation] When featuring Node Graphs in docu-

mentation, the user can either take a screenshot of

the graph, or recreate the graph in a vector graph-

ics editor. The former is unaesthetic, and the latter

is painstaking. For writing technical reports, a user

might need a simple tool that depicts their Node

Graph in a vector format at the click of a button –

which is exactly what this project accomplishes.

[Definition] The project aims to expose a window

in Blender’s user interface when a user is editing a

Node Graph (Fig. 2 , Step 1), where they are able

to press a button to create an SVG file containing

the vector representation of the currently displayed

Node Graph. Multiple options are offered to the user

that allow them to adjust the colors, extent of the

export and other parameters of the process.

[Contribution] The ability to quickly create repre-

sentations of Node Graphs has been a long-standing

request by academics. The implemented tool is now

being used by academics and students alike for various

theses and articles in or about the Blender application,

and aspires to be a mainstay of this field.

The figures present in the poster (Fig. 3 and Fig. 4

center, right) are directly exported from Blender with-

out further adjustment.

2. Implementation

The add-on is implemented in Python, as Blender

boasts architecture to integrate such scripts into its

runtime. These scripts can then import the virtual

bpy module, which encapsulates various data and

types, as well as the current state of the editor and

the project.

The project’s core functionality is retrieving and pars-

ing data related to the editor whence the export

http://excel.fit.vutbr.cz
mailto:xdrabe09@vutbr.cz

function is invoked, and constructing an XML tree

to form a vector file of the SVG format. Its hierar-

chical format allows for logical grouping of certain

elements together (i. e. the individual elements of

a Node). Without explicit placement adjustments,

SVG images are rendered using an approach where

elements defined later in the file will be rendered over

those defined earlier, the so-called ”painter’s model”

[2] (Section 3.1). Ordering of the elements in the

output file mirrors Blender’s own rendering process,

seen when inspected through tools such as Render-

Doc. The poster (Fig. 1 depicts how the elements

are defined: Frames (A), Wires (B), Nodes (C) and

Markers (D), layered over each other.

2.1 Editor Features

To help users organize their Node Graphs, Blender

has introduced various tools to clean the space up.

The poster (Fig. 3) features examples of three tools

used to keep a Node editor neat:

• Node Muting: Disabling the functionality of a
Node, turning it translucent while maintaining

the dataflow (A)

• Reroute Nodes: Nodes which allow users to
rearrange their Nodes’ connecting wires (called

’noodles’ in Blender internally) (B)

• Node Hiding: Collapsing a Node whilst keeping
its functionality, saving up on space in the graph

(C)

2.2 Export Properties

The add-on also allows the user to configure the ex-

porting process within Blender’s user interface. These

options include adjusting the color and other proper-

ties of the Nodes to visualize. This extends to their

header colors, the presence of rounded corners (as

Blender displays them), using an outline or the quality

of more complex graphical elements of the interface.

The poster showcases using two different export con-

figurations for the same RGB Curves Node (Fig. 4),

presented next to a screen capture of the Node (left):

one using Blender’s ’Print Friendly’ preset with the

export set to copy the properties of Blender’s theme

(center), and one with adjusted header and element

colors.

3. Usage

As mentioned in the Introduction (1), the add-on has

been a sought-after tool due to the importance of

Node Graphs to specific Blender projects, and their

abstract appearance warranting a vector representa-

tion. The usual method of simply taking a screenshot

of a Node Graph (which is what Fig. 1 is) has been

met with dislike due to the notorious poor quality of

raster images depicting abstract shapes.

While the add-on still has not yet undergone a full

release, it has been in circulation and picked up by

students and academics alike. The feedback has

proven invaluable in these late development stages,

as exhaustive work with the Node Graph editor on the

users’ end has helped discover issues across multiple

edge cases and application versions, while users are

able to request additional functionality of the add-on

that has not been intended in its conception.

4. Differences

The add-on’s output does not copy the original ap-

pearance from Blender perfectly. Some of it is inten-

tional, either adding or removing elements from the

Node. The poster features an example using the RGB

Curves Node (Fig. 4 and Fig. 5), where various

tools around the graph are not depicted in the output,

but, simultaneously, the graph showcases all four of

the graph’s curves at once, where Blender itself would

only show the user one curve at a time.

Most other inconsistencies stem from the fact that

Blender does not expose enough data to capture

the exact appearance of a Node either from a data

layer perspective, or as rendering calls (which has

been attempted through the RenderDoc application).

However, pixel measurements are not necessary as

most of the information is already conveyed through

the general appearance of various elements.

Acknowledgements

I would like to thank my supervisor, Ing. Tomáš

Chlubna, for their help. I would also like to thank

fellow students as well as professionals in the 3D

modelling and animation field for helping me design

and test the add-on.

References

[1] Mohammad Amin Kuhail, Shahbano Farooq,

Rawad Hammad, and Mohammed Bahja. Charac-

terizing visual programming approaches for end-

user developers: A systematic review. IEEE Ac-

cess, 9:14181–14202, 2021.

[2] Eric Willigers, Chris Lilley, David Storey, Amelia

Bellamy-Royds, Dirk Schulze, and Bogdan

Brinza. Scalable vector graphics (SVG) 2.

Candidate recommendation, W3C, October

2018. https://www.w3.org/TR/2018/CR-SVG2-

20181004/render.htmlPaintersModel.

	Introduction
	Implementation
	Usage
	Differences
	References

