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Abstract

Mata is a well-engineered, fast, and simple automata library in C++. It is maintainable and under-
standable. It has a simple architecture allowing a new user, a researcher, to quickly prototype new
algorithms and thoroughly optimize the final implementation. Mata targets string constraint solving,
reasoning about regular expressions, regular model checking, student projects, and research prototypes.
It comes with a large benchmark from string constraint solving, regular model checking, and reasoning
about regular expressions.
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1. Introduction
A new finite automata library Mata is intended to
be used in applications where automata languages
are manipulated by set operations and queries, pre-
sumably in a tight loop where automata are it-
eratively combined together using the classical as
well as special-purpose constructions. Examples
are applications like string constraint solving al-
gorithms such as [1, 2, 3, 4, 5, 6, 7], processing
of regular expressions [8, 9], regular model check-
ing (e.g., [10, 11, 12, 13, 14, 15, 16]), or decision
procedures for logics such as WS1S or quantified
Presburger arithmetic [17, 18, 19, 20]. The solved
problems are computationally hard. Efficiency is
hence a primary concern. An automata library
needs flexibility, extensibility, easy access to the
low-level data structures, and ideally a low learning
curve, which is important when involving students
in academic research and utilizing limited resources
of small research teams.

Fast and simple are therefore our two main require-
ments for the library. Mata is therefore built around
a data structure for the transition relation of a
non-deterministic automaton that is a compromise
between simplicity and speed. It represents tran-
sitions explicitly, as triples of a sources state, a
single symbol, and a target state. It allows to use
a data structure specifically tailored for computing
post-images of tuples and sets of states in automata
algorithms: a source state-indexed array, storing at

each index the transitions from that source state
in a two layered structure, with the first layer di-
vided and ordered by symbols, and the second layer
ordered by target states.
Besides the C++ API, it provides a Python binding
for fast prototyping and easy experimenting, for
instance using interactive Jupyter notebooks.
That Mata is a good fit for string constraint solving
is demonstrated by its central role in the string
solver Z3-Noodler, which implements the algorithms
of [1, 2], and outperforms the state of the art on
many standard benchmarks (see [21, 22] for details).
Out contributions can be summarised as follows:

1. Mata, a fast, simple, and well-engineered au-
tomata library, well suited for application in
string constraint solving and regex processing,
in research and student projects, as well as in
industrial applications.

2. An extension of a benchmark of automata
problems from string constraint solving, pro-
cessing regular expressions, regular model check-
ing, and solving arithmetic constraints.

3. A comparison of a representative sample of
well-known automata libraries against the above
benchmark, demonstrating the superior per-
formance of Mata.

2. Poster Commentary
Mata provides both C++ and Python interfaces for
general-purpose finite automata operations as well
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as some operations specific to string solving domain.
2.1 Distinctive Features
The main distinctive features of Mata are:

• Fast and simple.
• Explicit representation of the transition rela-

tion.
• SOTA algorithms to work with nondetermin-

ism.
• Modern development workflow and technolo-

gies.
• Easily extensible and modifiable.
• Well-documented, examples, testing infras-

tructure.
• High-level API with sane defaults, low-level

API for maximal optimization.
• Python interface.
• A basis for a modular automata format .mata.

2.2 Supported Operations
Mata supports the following operations:

• Fine-grained modification of NFAs.
• Boolean language operations (∩,∪, ·).
• Mintermization to handle large alphabets.
• Antichain-based language inclusion, equiva-

lence, membership, emptiness.
• Determinization, minimization, simulation re-

duction.
• ε-transitions, ε-product, ε-removal.
• Rich visualization interface.
• Parsing of regexes (from RE2) and .mata for-

mat.
2.3 Figuress and Tables Commentary
Figure 1 An example of using the C++ interface

for Mata. The code loads automata from a file
in the .mata format with bitvectors on transitions,
mintermizes them, constructs NFAs from the loaded
intermediate representations over the alphabet {a,
b, c}, trims and determinizes the NFAs, adds a new
transition with a new final state. It then creates
a second automaton accepting the word cbba, and
optionally concatenates the initial NFA with itself
and prints the result in the .mata format, shown in
the right-hand side.

Figure 2 The main determinant of Mata is its
three-layered data structure Delta for the transition
relation: an ordered vector indexed by states. For
each state, an ordered vector of transitions over
symbols, for each symbol, an ordered vector of target
states.

Figure 3 The usage of Delta in subset construc-
tion showing the advantages of Delta. Delta built

for computing a post-image of a set of states. For a
set of states S, compute post(S), where you iterate
trough all post(s) for s ∈ S. Since these transitions
are ordered, it is easy to iterate together. New
macrostate transition always inserted at the end of
the macrostate Delta.

Figure 4 An example of using Python interface
for Mata. Mata provides an easy-to-use Python
interface, as fast as C++ ($ pip install libmata).

The code loads automata from regular expressions,
concatenates them, and displays the trimmed con-
catenation with conditional formatting.

2.4 Experimental Evaluation
We compared Mata [23] against Vata [24], Brics
[25], Awali [26], Automata.net [27], AutomataLib
[28], FAdo [29], and Automata.py [30], on a bench-
mark from string constraint solving, reasoning about
regexes, regular model checking, and solving arith-
metic formulae. Mata consistently outperforms all
other libraries on all benchmarks in all operations.
Mata is also the backbone of the efficiency of the
SMT solver Z3-Noodler, [21, 22], which outperforms
the state of the art on many standard benchmarks.

Cactus plots show cumulative run time. Time axes
are logarithmic.
Tables show statistics for the benchmarks. We list
the number of timeouts (TO, 60 s), average time
on solved instances (Avg), median time over all
instances (Med), and standard deviation over solved
instances (Std). Best values are in bold, times are
in milliseconds unless seconds are explicitly stated.
∼0 means a value close to zero.

3. Conclusions
Mata is not the most general or feature-full library.
Other libraries are much more complex and com-
prehensive, and are more widely applicable. Mata,
however, does what it is meant to do better than
all the other libraries.

We continue working on Mata’s set of features as
well as its efficiency. We plan to extend Mata with
transducers, add support for registers that could
handle, e.g., counting in regular expressions. We be-
lieve that the efficiency of the basic data structures
can be much improved by focusing on the low-level
performance. Custom data structures, specialised
memory management, improvement in memory lo-
cality, and, generally, the class of optimizations used
in BDD packages, could shift Mata’s performance
much further.
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