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Abstract

Data languages are commonly used when working with infinite alphabets formally. This work explores

theoretical properties of some automata models over data words, and also shows a practical implementation

of one of the models as a regex matcher.
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1. Introduction

Finite automata are a staple formal model in computer

science. They, however, are designed to work on finite

alphabets and are often not sufficient when one wants

a model to work with infinite sets (e.g. integers) or

very large finite sets (e.g. Unicode symbols). Data

words are commonly used with extensions of finite

automata that are designed to work with infinite sets.

A data word is a sequence consisting of pairs of an

alphabet symbol from a finite alphabet, and a data

value from a countably infinite data domain.

2. Automata Models

Register Automata. A register automaton [1] (RA)

extends a finite automaton (FA) by adding a finite

set of registers, each of which can store a up to one

data value. On transitions, registers can be tested

for equality or non-equality. Each register can then

be updated by a new data value (of another register,

or current input data value in). See an example of

an RA in Figure 1, accepting the language of words

whose last data value appeared previously in the word.

Register Set Automata A register set automaton [2]

(RsA) is the same as an RA, except its registers,

sometimes called set-registers, hold a set of data

values instead of just one. On transitions, registers

can be tested for (non-)membership, and register

updates are denoted by a set that can contain registers

and in. They also have an extension RsArm that

also allows the removal of in on transitions. See an

example of a deterministic RsA, accepting the same

language as a the non-deterministic RA from Figure 1,

in Figure 2.

History Register Automata A history register au-

tomaton [3] (HRA) also has a set of set-registers.

On a transition, two sets of registers are specified,

Rg,Rup. The transition checks that in is stored ex-

actly in the registers in Rg (i.e., is stored in all the

registers in Rg, and in none of the other registers) to

be enabled. After the transition is taken, it updates

the register contents such that in is stored exactly

in the registers of Rup. HRAs can also empty their

registers on special reset transitions. See an example

of a deterministic HRA in Figure 2. It also accepts

the same language as the RA in Figure 1.

Streaming Data-String Tranducers A streaming data-

string transducer [4] (SDST) is a tranducer model

over data words. It has a set of data variables, which

are essentially RA-style registers that can also be

checked for inequality (for an ordered data domain).

To generate an output, they have a set of data-string

variables, each storing a data word. These can be

updated by a word constructed from data and data

string variables. The SDST has an output function

that outputs a data word after reading the entire

input data word. See Figure 4 for an example SDST

that reverses the input data word.

3. Extending SDSTs

Regular SDSTs can represent (imperative and func-

tional) single-pass list-processing programs [4], and

can thus be used in formal analysis and verification

of these programs. E.g., SDSTs can represent a

program that reverses the input list (see Figure 4).

SDSTs with set-registers. We extend SDSTs by equip-

ping them with a finite set of set-registers (SDSTset).
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The set-registers can be tested for (non-)membership

of in on transitions, and can be updated by adding or

removing in. Another difference is that an SDSTset

does not allow inequality tests of data variables, only

(non-)equality tests.

Theorem 1. The functional equivalence problem for

SDSTset is decidable.

Practically, Theorem 1 gives us a decidable way to

determine whether two SDSTsets are semantically

equivalent, which is important in terms of formal

analysis and verification. SDSTsets can represent

a class of single-pass list-processing programs with

a set type data-structure available for them to use.

An example program that can be represented by an

SDSTset, but not by an SDST is a program that

removes duplicates from a list (see Figure 5).

4. Relating RsAs and HRAs

Because HRAs can remove the input symbol from

registers, we will be comparing them with RsArm in

terms of their expressive powers. The first result is

that RsAs generalize HRAs (and it holds for their

deterministic variants as well).

Proposition 2. HRA ⊆ RsArm

Corollary 3. DHRA ⊆ DRsArm

The other direction of Proposition 2 is left as an

open problem. However, we have found a language

differentiating their deterministic variants.

Proposition 4. DHRA ⊊ DRsArm.

5. RsA Emptines Parametrization

The emptiness problem is known to be Ackermann-

complete for both RsA, and RsArm when the number

of registers is part of the input [2]. We show some

complexity results of both RsA variants with a fixed

number of registers.

Proposition 5. The emptiness problem for RsA1 is

NL-complete.

Proposition 6. The emptiness problem for RsArm1 is

NL-complete.

Proposition 7. The emptiness problems for RsArmn
is in F2n+1 for n ≥ 2.
Corollary 8. The emptiness problems for RsAn is in

F2n+1 for n ≥ 2.

6. RsA-based Regex Matching

RAs can be represent a class of regular expressions

with back-references. However, RAs are not determin-

isable in general, and thus are not useful for effective

matching of regexes. There does, however, exist an

algorithm that can determinise a class (which was

extended in this work) of RA to DRsA [2].

The implemented matcher uses the regex parser of

the Python module re [5]. It then constructs an

RA from the created syntax tree. With the above-

mentioned algorithm, the RA is determinised into a

DRsA, which is then used for matching (if the RA

and DRsA constructions were successful.

6.1 Experiments

Using the ReDOS (regex denial of service) attack gen-

erators rxxr2 [6] and rescue [7], vulnerable regexes

with back-references were extracted from a set of

regexes used in practice. The generated combina-

tions of regex and attack string were then run on

the RsA matcher, re, the pcre2 library [8], and GNU

grep [9]. Table 1 shows the number of timeouts for

each tool out of the regexes that were successfully de-

terminised (note that the RsA matcher timeouts were

caused by RA determinisation, not actual matching).

Figures 7 and 8 show scatterplots of matching times

of pcre2 and re respectively against the RsA matcher.

Though grep was not defeated by the generators, we

show that it is possible with a difficult hand-crafted

regex and input in Figure 6.

7. Conclusion and Future Work

The complexity of RsA emptiness was closer specified

based on the number of registers. The expressive

powers of RsAs and HRAs were compared to one

another. An extension of SDST that allows them to

use set-registers was presented, and it was shown that

its functional equivalence is decidable. An RsA-based

regex matcher was implemented and compared to

existing matchers, with the results showing that an

RsA-based matcher could be used for safe matching

of regexes with back-references.

In the future, we hope to further explore SDSTset

and see if we can increase its expressiveness (by, e.g.,

keeping the order on the data domain or allowing

register resets), while keeping functional equivalence

decidable. We would also like to extend the class of

regexes with back-references that can be represented

by DRsA, and start work on a ReDOS generator

focusing on back-references.
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