
Formal Models for Data Languages
Jan Vašák, 2024
Supervisor: Ing. Ondřej Lengál Ph.D

[1] Asiri Rathnayake and Hayo Thielecke. Static analysis for regular expression exponential runtime via substructural logics. CoRR, abs/1405.7058, 2014
[2] Free Software Foundation, Inc. GNU grep 3.6. 2021 [online]. [cit. 2022-02-02]. Available at: https://git.savannah.gnu.org/cgit/grep.git.
[3] Gulčíková, S. and Lengál, O. Register Set Automata (Technical Report). arXiv, 2022 [online]. DOI: 10.48550/ARXIV.2205.12114.]. Available at: https://arxiv.org/abs/2205.12114.
[4] Hazel, P. Perl-compatible Regular Expressions. Version 10.42. 2022 [online]. [cit. 2024-04-12]. Available at: https://www.pcre.org.
[5] Python Software Foundation. Python Standard Library - re Module. Version 3.10.12. 2023 [online]. [cit. 2024-04-20]. Available at: https://docs.python.org/3/library/re.html
[6] Yuju Shen, Yanyan Jiang, Chang Xu, Ping Yu, Xiaoxing Ma, and Jian Lu. Rescue: crafting regular expression DoS attacks. In ASE’18, pages 225–235. ACM, 2018.

Automata Models

Data Words. This work is mostly
focused on automata models over
data words. Data words are
sequences of pairs of symbols and
data values. Symbols are elements of
a finite alphabet Σ, and data values
are elements of a countably infinite
data domain ⅅ. For example,
 (a, 1)(b, 2)(a, 42)
is a data word over Σ = {a, b}, and ⅅ
= ℕ (ℕ being the set of natural
numbers). Data words are commonly
used in formal models
superstitiosuperstitio

working with infinite sets (e.g.
integers), or large finite sets (e.g.
Unicode symbols).

Register Automata. A register
automaton (RA) extends a finite
automaton with a finite set of
registers. Each register can store up to
one data value. When running a word,
the RA can check the (non-)equality of
the current input data value (in) to all
its registers.

Register Set Automata. A register set
automaton (RsA) is the same as an RA,
except its registers (set-registers)
secret

store a set of data values instead of
just one and have (non-)membership
tests instead of (non-)equality tests.
RsArm is an extension of RsA allowing
the removal of in.

History Register Automata. A history
register automaton (HRA), like an RsA,
also has set-registers storing sets of
data values. However, an HRA updates
its registers in a different way to an
RsA. For an HRA transition, two sets of
registers a specified. The first set
species which set-registers exactly the
input value must be stored in to
secret

enable the transition. The second
specifies which set-registers exactly it
will be stored after the transition is
taken. HRAs also allow transitions that
reset registers, but do not read any
input.

Streaming Data-String Transducers.
A (deterministic) streaming data-
string transducer (SDST) is a
transducer model with a set of data-
variables (RA-style registers), and a
set of data-string variables, each
storing a data word. Additionally,
SDSTs operate on a totally ordered
data domain, and thus allow to test
inequality of data-variables to the
current input data value.

Figure 1: An RA accepting the language of
words, whose last data value is not unique

Figure 2: An RsA accepting the language
from Figure 1

Figure 3: An HRA accepting the language
from Figure 1

Figure 4: An SDST reversing the input
string (its output is defined as x in q)

RsA Emptiness

Parametrization

The emptiness problem is the
problem of whether an RsA accepts
any string at all. We parametrize its
complexity based on the number of
registers for both the normal variant
and the removal extension.

Proposition 5. The emptiness
problem for RsA1 is NL-complete.

Proposition 6. The emptiness
problem for RsArm is NL-complete.

Proposition 7. The emptiness
problem for RsArm is in F(2n +1).

Corollary 8. The emptiness problem
for RsAn is in F(2n +1)..

1

n

Extending SDSTs

Programs as SDSTs. In their original
form, SDSTs can represent
(imperative and functional) single-
pass list-processing programs. Thus,
they can be used for formal analysis
and verification of such programs.
Examples of such programs include a
program reversing the input list (see
Figure 4), or a program checking
whether the input list is sorted.

SDST Extension. We extend SDSTs by
adding a set of set-registers, that can
be tested for (non-)membership of
the current data-value and updated
by adding or removing a data value.
However, data-variables are
restricted from the original model in
that they cannot be tested for
inequality, only (non)-equality.

The main result for our extension is
the following.

Theorem 1. The functional
equivalence problem for SDSTs with
set-registers is decidable.

Which is an important result for
formal analysis and verification use.
Our extension could be used to
represent single-pass list-processing
programs with a set type data-
structure available for them to use.

def remove_duplicates(input_list):
result = list()
set = set()
For i in input_list:
 if i not in set:
 result.append(i)
 set.add(i)
return result

We compare the expressive powers
of the two models. First, we state
that all HRAs can be converted to
RsArms.

Proposition 2. HRA ⊆ RsArm.

The same proof can be used for their

deterministic variants as well.

Corollary 3. DHRA ⊆ DRsArm.

The other direction of Proposition 2
is left as an open problem. However,
we do have a result for the
deterministic variants.

Proposition 4. DHRA ⊊ DRsArm.

I.e., deterministic RsArms are more
expressive than deterministic HRAs.

Relating RsAs

and HRAs

RsA-based

Regex Matching

Regex Matcher. A regex matcher was
built using RsAs as a model for
matching. It uses the regex parser
from Python’s re module [5] and
constructs an RA from the acquired
syntax tree. The RA is then
determinised using an existing
algorithm [3] that can determinise a

class of RAs into DRsA. The desired
input is then run on the constructed
DRsA.

Experiments. Using the ReDOS attack
generators rescue [6] and rxxr2 [1],
vulnerable regexes with back-
references were extracted from a set
of regexes used in practice. The
regexes with their generated attack
strings were then run on the RsA
matcher, Python’s re module, the
pcre2 library [4], and GNU grep [2].

Though the generators were unable
to defeat grep, we show that it is
possible with a hand-crafted regex
and input in Figure 6. Figures 7 and 8
show the results of the pcre2 and re
for the determinised regexes.

Total
deter-

minised
DRsA

timeouts
pcre2

timeouts
re

timeouts
grep

timeouts

rxxr2 97 47 1 36 43 0

rescue 60 22 1 18 21 0

 .

 .

 .

Figure 8: A scatterplot comparing re and
RsA for merged rxxr2 and rescue data

Figure 7: A scatterplot comparing pcre2
and RsA for merged rxxr2 and rescue data

Figure 6 (top right): RsA and grep comparison
for a hand-crafted regex and input

Table 1: Numbers of timeouts (10 s) for each matcher on the determinised regexes only.

Figure 5: A program representable by an
SDST with set-registers (and not by an SDST)

https://git.savannah.gnu.org/cgit/grep.git
https://arxiv.org/abs/2205.12114
https://www.pcre.org/
https://docs.python.org/3/library/re.html

	Snímek 1

