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Abstract

Classical quantum circuit simulation is a vital tool for understanding the potential of quantum computation.

This work introduces a novel approach to decision diagram-based quantum circuit simulation that signif-

icantly outperforms the current state of the art, for example for circuits implementing Grover’s search

algorithm.
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1. Introduction

Quantum computing is a very intriguing field of com-

puter science that leverages the principles of quantum

mechanics to perform computations in ways that clas-

sical computers are unable to. The potential of quan-

tum computers has exciting implications for many

different fields, such as physics [1], chemistry [2], and

finance [3]. Tools that can efficiently simulate quan-

tum circuits on classical computers are essential for

future research in this field for two reasons.

The first is that quantum computers are still not read-

ily available, mainly because of the price of building

such a system. The second reason is that in a real

system, we need to measure a qubit to make obser-

vations about its state, which leads to the collapse of

the state of the qubit (this operation is irreversible).

This means that it is not possible to directly examine

the probability amplitudes of a real system, which can

only be done in a simulation. However, classical quan-

tum circuit simulation is not a trivial computational

task due to the significant difference between the size

of a qubit state space and a classical bit state space.

Today, there are several different approaches to the

simulation of quantum circuits. These approaches

differ mainly in the underlying data structure used

(currently, the most popular are different variants of

decision diagrams). However, the current state of

the art still leaves a lot of room for improvement in

terms of performance, especially when it comes to

more complex circuits with a larger number of qubits.

This work presents the usage of symbolic execution to

significantly speed up the simulation of circuits with

loops. The proposed method has been implemented in

the MTBDD-based quantum circuit simulator MEDUSA.

Also, this work provides an experimental comparison

with the current state of the art. It is shown that

MEDUSA vastly outperforms the current state of the

art for various quantum circuits.

2. Preliminaries

This section introduces the necessary basics of quan-

tum computing and MTBDDs.

2.1 Quantum Computing

A qubit’s quantum state |ψ⟩ can generally be in a lin-
ear combination called a superposition of the compu-

tational basis states |0⟩ and |1⟩

|ψ⟩= α |0⟩+β |1⟩ ,

where α,β ∈ C are the probability amplitudes for the
respective basis states. A single qubit’s state is there-

fore a two-dimensional complex vector (sometimes

called a state vector).

A generally n-qubit system’s state |ψ′⟩ can be in
a superposition of all the system’s computational

basis states

|ψ′⟩= ∑
i∈{0,1}n

αi · |i⟩ ,

and therefore is a 2n-dimensional unit complex vector

(again, αi ∈ C are the probability amplitudes of the
corresponding basis states).

Quantum gates are used to alter the system’s quan-

tum state. They can be conveniently represented

http://excel.fit.vutbr.cz
mailto:xjobra01@stud.fit.vutbr.cz


as unitary matrices (see Figure 1). The update of

the system’s quantum state is simply carried out as

a matrix multiplication of the gate matrix with the

state vector.

2.2 Decision Diagrams

A reduced ordered binary decision diagram (ROBDD),

simply referred to as a BDD, is a data structure that

can be efficiently used for encoding Boolean functions

as was suggested by Bryant [4].

Multi-terminal binary decision diagrams (MTBDDs)

are a generalised variant of BDDs — the only differ-

ence is that MTBDD’s terminals can have an arbitrary

value. Because of that, MTBDDs can represent any

function f (v1, ...,vn) : {0,1}n → D, for any D ̸= ∅
with finitely representable elements.

3. MTBDD-based Quantum Circuit Simula-

tion

The classic representation of quantum state as a vec-

tor is not very convenient, as the data structures

(the state vector and gate matrices) grow exponen-

tially in size w.r.t. the number of qubits in the circuit.

Instead, we view the system’s state as a function

f : {0,1}n → C, where the evaluation of input vari-
ables corresponds to a computational basis state and

the value of this function is then the corresponding

probability amplitude (see Figure 2). We also use an

exact algebraic representation of complex numbers

(see Equation 1) proposed in [5].

The gate application is performed as a single custom

Apply for single qubit gates and controlled phase

gates. For other multi-qubit gates, this is not possible

and a sequence of operations over the MTBDD using

the standard Apply procedure is performed instead.

Based on these methods, the simulator MEDUSA was

implemented.

4. Proposed Symbolic Execution Extension

Symbolic execution consists of converting a classical

representation into a symbolic representation, fol-

lowed by symbolic simulation, and a final evaluation

of all symbolic variables to convert back into the

classical representation (see Figure 3).

This allows us to compute the big-step semantics of

loops in the quantum circuit, which in turn leads to

a significant acceleration of the calculation for cir-

cuits with loops with more than just a few iterations

(there is no need to reevaluate the individual gates

in each iteration). We represent the modification of

the MTBDD caused by a single loop iteration with

a symbolic update formulae in the form of a MTBDD.

A second MTBDD is used to hold information about

the value mapping of the classical MTBDD into the

symbolic variables. Then MEDUSA computes the end

result by repeated (corresponding to the number of

iterations) substitution of the symbolic variables in

this symbolic update MTBDD with the actual values

of probability amplitude coefficients. This is particu-

larly useful because loops are often a key element of

quantum algorithms, e.g., algorithms that are based

on amplitude amplification (Grover’s algorithm) or

phase estimation (Shor’s algorithm).

5. Experimental Results

The experiments consisted of comparing both classi-

cal and symbolic modes of MEDUSA with the current

state-of-the-art tools, namely decision diagram-based

tools SliQSim [6], MQT DDSIM [7], Quasimodo [8],

and CNF-based Quokka# [9]. Since Quasimodo sup-

ports multiple different decision diagram backends, all

of them were tested separately. Benchmark circuits

consist of circuits implementing Grover’s algorithm,

quantum counting (without inverse QFT), and period

finding (also without inverse QFT). Both runtimes

and peak memory usage (peak RSS) were compared.

As is shown in Figure 4, Figure 5 and Table 1

MEDUSA’s symbolic simulation significantly outper-

forms the state of the art for circuits implementing

period finding and especially Grover’s algorithm. Our

symbolic simulation method still somewhat keeps up

with the state-of-the-art tools in circuits implement-

ing quantum counting (see Figure 6), however, the

proposed approach could be easily extended for the

best-performing Quasimodo backend options, which

run faster for this type of circuit.

6. Conclusions

This work introduces a novel approach to quantum

circuit simulation, which consists of combining sym-

bolic execution with a regular decision diagram-based

simulation method. In the conducted experiments, it

is shown our approach greatly outperforms the state

of the art when it comes to circuits implementing

Grover’s algorithm and quantum counting. Although

some other state-of-the-art options performed better

for circuits implementing period finding, our approach

could be extended to these decision diagrams as well.
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Ph.D. for his time and guidance.



References

[1] Han-Sen Zhong, Hui Wang, Yu-Hao Deng, Ming-

Cheng Chen, Li-Chao Peng, et al. Quantum

computational advantage using photons. Science,

370(6523):1460–1463, 2020.

[2] Sam McArdle, Suguru Endo, Alán Aspuru-Guzik,

Simon C. Benjamin, and Xiao Yuan. Quantum

computational chemistry. Reviews of Modern

Physics, 92(1), March 2020.

[3] Dylan Herman, Cody Googin, Xiaoyuan Liu, Yue

Sun, Alexey Galda, Ilya Safro, Marco Pistoia,

and Yuri Alexeev. Quantum computing for fi-

nance. Nature Reviews Physics, 5(8):450–465,

July 2023.

[4] Randal E. Bryant. Graph-based algorithms for

boolean function manipulation. IEEE Transactions

on Computers, C-35(8):677–691, 8 1986.

[5] Philipp Niemann, Alwin Zulehner, Rolf Drech-

sler, and Robert Wille. Overcoming the trade-

off between accuracy and compactness in deci-

sion diagrams for quantum computation. IEEE

Trans. Comput. Aided Des. Integr. Circuits Syst.,

39(12):4657–4668, 2020.

[6] Yuan-Hung Tsai, Jie-Hong R. Jiang, and Chiao-

Shan Jhang. Bit-slicing the hilbert space: Scaling

up accurate quantum circuit simulation. In 2021

58th ACM/IEEE Design Automation Conference

(DAC), pages 439–444, 2021.

[7] Alwin Zulehner and Robert Wille. Advanced simu-

lation of quantum computations. Trans. on CAD

of Integrated Circuits and Systems, 38(5):848–

859, 2019.

[8] Meghana Sistla, Swarat Chaudhuri, and

Thomas W. Reps. Symbolic quantum simulation

with quasimodo. In Constantin Enea and Akash

Lal, editors, Computer Aided Verification - 35th

International Conference, CAV 2023, Paris,

France, July 17-22, 2023, Proceedings, Part III,

volume 13966 of Lecture Notes in Computer

Science, pages 213–225. Springer, 2023.

[9] Jingyi Mei, Marcello M. Bonsangue, and Alfons

Laarman. Simulating quantum circuits by model

counting. CoRR, abs/2403.07197, 2024.


	Introduction
	Preliminaries
	MTBDD-based Quantum Circuit Simulation
	Proposed Symbolic Execution Extension
	Experimental Results
	Conclusions
	References

