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Abstract

The problem of mesh alignment is often solved through point cloud registration. The registration task

faces several challenges e.g., noise, partial data, and sparse density. Numerous deep learning-based

registration methods are published every year achieving state-of-the-art results. Based on their core

concepts, the methods can loosely be divided into correspondence-based and correspondence-free. Even

though comparisons of individual methods exist, the cross evaluations of both categories are lacking. In

this work, we present a deeper evaluation of Lepard and FINet, on the ModelNet dataset. We show that

FINet outperforms Lepard in low-density clouds by 6◦ Error(R) and 0.0077 Error(t). Moreover, we show

that both methods are sensitive to the data preparation process.
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1. Introduction

Registering 3D models is a longstanding and cru-

cial task in computer vision. The primary objective

is to estimate the rotation and translation between

source and target models. These models are often

represented in the form of point clouds, as shown

in Introduction section of the poster. Conventional

methods such as ICP tend to fall into local optimum

and struggle with more challenging tasks when the

point clouds are obscured with noise and partiality.

The most common registration uses are in augmented

reality, medical imaging, 3D reconstruction, and au-

tonomous driving.

Recently, many deep learning methods have been de-

veloped, which can be categorised into correspondence-

based and correspondence-free. Despite this very little

attention is given to the cross-evaluation of methods

in those two categories. Moreover, these methods are

often evaluated on different datasets using different

metrics.

This work examines two methods called Lepard and

FINet. We test both methods on a set of experiments

using the same data and evaluation metrics. Further-

more, we created our own sampling and augmentation

pipeline following the works of [1].

2. Evaluated Method

Lepard is a correspondence-based method. It is de-

signed around the KPFCN feature extractor, the con-

cept of Transformers with self-attention and cross-

attention, and differentiable matching. As this method

outputs matched features, it uses RANSAC to es-

timate the final transformation. We can see the

architecture in Figure 1 section. The authors intro-

duced three novel ideas to leverage this 3D positional

information [2].

• First, a network that fully disentangles the point
cloud representation into a feature space and a

position space.

• Second, a positional encoding function is used,
that reveals relative distance information be-

tween points.

• Thirdly, a repositioning module that applies
transformation in between transformer layers

to enhance the relative position between the

source and target point cloud.

FINet falls into the correspondence-free category. It

directly regresses the rotation and translation from

the extracted features. It emphasises data association

as a significant step in registering models. This ap-

proach introduces three innovative ideas listed below
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• First, an embedding module is proposed that
manages to extract multi-level features. This

promotes the data association between inputs.

• Secondly, the feature extraction is split into
two separate branches, as shown in Figure 2 .

One for translation and the second for rotation

feature extraction.

• Finally, the transformation-sensitive loss is in-
troduced, which enhances the extraction of

rotation-attentive and translation-attentive fea-

tures.

3. Data

ModelNet40 dataset is used to evaluate both meth-

ods. It consists of 40 categories with 12 311 CAD

models. To prepare the data for training both net-

works, we constructed a pipeline similar to the works

of [4]. We sample point clouds from given meshes

using uniform sampling.

To introduce challenging scenarios, as illustrated in

Challenges , we created a data augmentation pipeline

inspired by works of [1]. We augment the data just

before running it through the network. Some of the

augmentations are Gaussian noise, random rotation

and translation, and partiality.

4. Metrics

The basic metrics can be split into anisotropic and

isotropic. For anisotropic we follow the work of [5].

These metrics are Mean Absolute Error and Mean

Square Error for rotation and translation. Due to

space, we only display the isotropic errors, such as

Mean Isotropic Rotation and Translation Errors, be-

cause they provide a clearer image of the misalign-

ment, see equation 1.

Error(R)=∠(R−1GT R̂) ; Error(t)= ∥tGT − t̂∥2 (1)

Where {RGT , tGT } is ground truth and {R̂, t̂} is pre-
dicted rotation and tranlsation. The ∠ returns the
rotation angle of the matrix in degrees [1]. Mean-

while, the translation error is displayed in proportion

to the unit sphere.

Above mentioned metrics unfairly penalize for sym-

metries, present in the samples. Therefore, we also

calculate the Chamfer distance metric between the

source point cloud and the target point cloud.

5. Experiments

The first experiment showed in Results section of

the poster is focused on highlighting the correspon-

dence impact in the dataset. With our pipeline, we

constructed three distinct datasets:

• Once sampled data without subsampling (OS/w).
Exact one-to-one correspondence.

• Once sampled data with subsampling (OS).
Varying amount of one-to-one correspondence.

• Twice sampled data with subsampling (TS).
Zero one to one-to-one correspondence.

The results can be seen in the first table of Table 1 .

Interestingly both methods are impacted with de-

creasing amounts of one-to-one correspondences, as

we would suspect this only to happen with Lepard.

A second observation is that FINets error increases

significantly on unseen categories (test subset).

The second experiment Table 2 is dedicated to chal-

lenging cases of registration. Data was augmented

with Gaussian noise and partiality of varying magni-

tude. The ≈ 72% overlap is the usual testing norm.
We further pushed the limits to ≈ 53% overlap. It is
worth noting that the worse performance of Lepard

might be due to the sparse density of the point cloud.

Figure 3 is dedicated to the significant increase in

the error of FINet, evaluated on unseen categories.

The plot shows per category rotational error, where

we can see that some categories e.g., plant, stairs,

and stool, are much worse compared to Lepard. The

person and radio category performs worse for both.

The visual representation of registered data is pre-

sented in Results section. We highlight several ex-

amples including the use of ICP or subsequent refine-

ment with it.

6. Conclusions

This work showcases the abilities of both types of

point cloud registration methods. We constructed

our own data sampling and augmentation pipeline to

perform given experiments. Under simple conditions,

both methods perform well with Lepard performing

slightly better. However, with added imperfection,

the robustness of FINet is highlighted.

During the creation of this poster, we experimented

with more dense point clouds. Moreover, we try to

combat the FINet’s increasing error in some cate-

gories. Unfortunately, due to time restrictions, we

were not able to showcase our results.
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