
http://excel.fit.vutbr.cz

Impact of AI Tools on Code Quality and Security

Peter Vinarč́ık*

Abstract

This work is aimed at creating a research framework focused on testing available generative AI. The

output of the presented framework is a comprehensive overview of the tested AIs (ChatGPT-4, GitHub

Copilot, ChatGPT-3.5, Gemini), mainly directed towards the security of the code generated by the given

AIs. Another output is the correctness of the generated codes. Apart from the AI, framework integrates

Static Application Security Testing (SAST) tools for finding vulnerabilities in the given code using static

analysis. MITRE’s methodology is then utilized to rate the severity of the vulnerabilities in the given code,

in case any has been detected. The work also presents a second approach that targets on daily use of

chat-bots such as ChatGPT or Gemini, where the integrated chat-bots are enhanced with an automatic

vulnerability scan in the generated code.

*xvinar00@vut.cz, Faculty of Information Technology, Brno University of Technology

1. Introduction

Only a small amount of researches targeting genera-

tive AI is focused on cybersecurity. Of these, most

are performed on a single AI while testing is semi-

automated or even manual. Therefore, there is a need

to perform research on a larger scale and present a

unified framework, usable for future testing extended

with new AI or SAST tools.

2. Problem Definition

New models of generative AI are emerging every day,

and with them comes the challenge of the security of

the generated code. Existing researches described in

chapter 3, do not agree on one particular approach

for evaluating the safety and so this thesis aims to

present a unified system for evaluating the safety of

AI generated code.

3. Related Work

In the papers such as Lost at C: A User Study on

the Security Implications of Large Language Model

Code Assistants [1], Do Users Write More Insecure

Code with AI Assistants? [2], and Asleep at the Key-

board? Assessing the Security of GitHub Copilot’s

Code Contributions [3], all agree on the fact, that

they were performed only with the use of a single AI

- GitHub Copilot. In those cases, the evaluations are

semi-automated or completely manual - with use of a

security tool such as CodeQL. The above-mentioned

studies have been an initial approach to the security,

but the field of generative AI has experienced an enor-

mous growth in the recent year, accompanied by the

emergence of new models. The resulting framework

is in some ways inspired by these studies, especially

the tools used in these studies, but in addition to

the large-scale experiment execution, the method-

ology for the evaluation of the generated code has

been modified, which will be discussed and described

further in section 4.

4. Proposed Solutions

This thesis presents two approaches.

4.1 Research Framework

The first is a research approach where a fully auto-

mated framework is introduced. The pipeline of the

framework can be seen in Figure 1. The input is a

dataset of human-readable prompts, or optionally dif-

ferently formatted prompts separated by the delimiter,

then the prompts are sent to the integrated AI mod-

ules. Subsequently, evaluation of the first statistic in

the form of validity of the generated code takes place.

An extension in this section is planned to introduce

the possibility of using unit tests. In case the code is

valid, a static analysis is performed. To support the

http://excel.fit.vutbr.cz
mailto:xvinar00@vut.cz


vulnerability search, three SAST tools are integrated.

Since more SAST tools are used and the static anal-

ysis is known to have a higher rate of false positives,

the resulting analysis includes the intersection of the

CWEs (Common Weakness Enumeration) found by

the given tools to confirm if a certain vulnerability has

been found by 2 or more tools. If the static analysis

results with a vulnerability, this vulnerability is flagged

with the appropriate Common Weakness Enumeration

(CWE) by the SAST tool that discovered it. Using

the NVD (National Vulnerability) API, all vulnera-

bilities linked to this CWE can be retrieved. These

vulnerabilities are scored by the CVSS (Common Vul-

nerability Scoring System) and this system is being

used by the implemented MITRE’s methodology. The

calculation of the severity of a given vulnerability can

be observed in Equation 1. Using this methodol-

ogy, vulnerabilities found with low frequency and high

severity are rated low, because if developers are not

making a particular mistake, then the vulnerability

should not be rated high and vice versa.

4.2 Enhanced Chat-bots

The second approach is to integrate existing Chat-

bots (currently Gemini, ChatGPT-3.5 and ChatGPT-

4), where the responses that contain the source code

are immediately scanned and the output is enhanced

by marking the location of the potential vulnerabilities

where they were found, with more details - see Figure

2.

5. Testing

Testing was performed on the dataset used in research

[3], which contains a total of 29 Python and 25 C test

cases, inspired by MITRE’s Top 25 for 2021 (very

few changes from 2023). The test cases consist of

existing code that the AI is supposed to complete.

The next iteration of testing is a planned on a dataset

consisting from human-readable prompts, inspired by

this dataset. The detailed results of each AI for each

prompts are recorded with the schema as shown in

Figure 3.

Proof-of-concept testing has currently been conducted,

with a total of 4 different approaches. In Figure Fig-

ure 4, is the result of testing on the Python part

of the dataset. The graph and the results marked

with A are from the original dataset, which was taken

from [3]. The graph and results B are experiments

with a simple prompt-engineering approach, where a

sentence is added to each prompt, pointing out the

importance of code security. The sentence is formu-

lated in general terms without a concrete warning

about a specific vulnerability, since it is expected that

in the real world, programmers using AI may not have

a deeper knowledge about potential vulnerabilities.

In Figure 5, is testing on a C language dataset. The

low percentage of vulnerable code is mainly explained

by the fact that many of the prompts have not already

passed the validity check of the generated code, and

so the security analysis has not even taken place.

However, the low percentage success rate does not

necessarily imply the inability of the AI to generate C

code, when a manual validation of the generated code

was performed, it was observed that for C code, the

AI often just completes a part of the required code

(the used dataset is built on this principle as well) and

so the compiler does not consider this code as valid.

It was this testing result that initiated the motivation

to prepare a dataset that will contain only sentences

describing the expected result. An assumption for

further research is that if the AI starts generating

from scratch, the overall validity of the code will be

higher.

6. Contribution

This thesis results in a proof-of-concept for testing

generative AIs using the presented framework, which

utilizes a MITRE-inspired methodology. It is thanks to

this methodology that, compared to existing research,

it is possible not only to determine the percentage

statistics of secure and valid AI-generated code, but

also to determine the severity of the reported vulner-

abilities.

Moreover, an application which integrates existing

chat-bots has been presented, where the user is

alerted to a potential vulnerability during the gen-

eration of code by a given AI.

References

[1] Gustavo Sandoval, Hammond Pearce, Teo Nys,

et al. Lost at c: A user study on the security im-

plications of large language model code assistants.

online, 8 2022.

[2] Neil Perry, Megha Srivastava, Deepak Kumar, and

Dan Boneh. Do users write more insecure code

with ai assistants? online, 11 2022.

[3] Hammond Pearce, Baleegh Ahmad, Benjamin

Tan, et al. Asleep at the keyboard? assessing

the security of github copilot’s code contributions.

online, 8 2021.


	Introduction
	Problem Definition
	Related Work
	Proposed Solutions
	Testing
	Contribution
	References

