2015

http://excel.fit.vutbr.cz

Game Interface with Data Projector and Leap

Motion

Jonas Holcner*

Abstract

The goal of this paper is to develop user interface using potential of the Leap Motion Controller in
combination with projected image of a projector. This interface requires a projector calibration for
user to be able to interact with the image. The calibration enables translation of points between
coordinate spaces of Leap Motion and projector. Combined with data from Leap Motion, this allows
user to interact with applications and games only by hands within the projected image. The solution
contains a projector and a Leap Motion located over a table looking at the table desk. Leap Motion
is used to track hand motions above the table. The capabilities of the proposed interface are
demonstrated on a computer game, which was developed in Unity 3D engine.

In this paper is proposed a new way of interacting with applications and games using the unique
control interface.

Keywords: Leap Motion — Camera calibration — Projector calibration — Leap Motion projector

interface — Unity 3D

Supplementary Material: Demonstration Video — Downloadable Code

*xholen01@stud.fit.vutbr.cz, Faculty of Information Technology, Brno University of Technology

Lately, there has been an effort to come up with new
ways of how people can control and interact with com-
puters and applications. But not all of those prevail
or live up to their full potential. One of those new
controllers is the Leap Motion, a sensor, that tracks
hand and finger motions and gestures. In this paper is
described a user interface combining a projector and a
Leap Motion.

The interface requires properly calibrated projector.
The usual camera-projector set uses camera to capture
calibration patterns. The problem here is that Leap
Motion uses IR cameras which cannot see light emitted
from the projector. Therefore we cannot use common
calibration techniques. Instead, Leap Motion can be

taken as pre-calibrated camera, that is able to capture
hands instead of the calibration patterns.

There are many papers introducing different meth-
ods of calibrating camera - projector set. However,
none of those delivers a way to do this calibration with
a Leap Motion posing as a camera. One of the most
renown papers on this topic is Zhang [1]. Zhang’s
calibration method requires a planar checkerboard grid
with known dimensions to be placed in at least two
orientations in front of the camera. It extracts corner
points from each of these orientation and uses them
to compute projective transformation between the n
captured images.

This method is popular because of its ease of use
and deployment. It does not require expensive scan-

http://excel.fit.vutbr.cz
https://youtu.be/ubYSvV7RuKI
https://github.com/jojkos/LeapMotion-interface
mailto:xholcn01@stud.fit.vutbr.cz

Figure 1. Example of a Leap Motion usage

ning device but only an off-the-shelf camera and a
projector. The checkerboard calibration pattern can be
printed on any black-white printer.

G. Falcao, N. Hurtos and J. Massich [2] explains
why we need to use already calibrated camera to cali-
brate projector. The projector cannot image the surface
that it illuminates so the correspondence between the
2D projected points and the 3D illuminated points can-
not be made without the use of a camera.

In the proposed solution, Leap Motion poses as
a pre-calibrated camera. The calibration of projector
is done using hands and fingers with Leap Motion
tracking their location in space.

Using projector calibration brings us a way to trans-
form the points from 3D metric coordinates of the
Leap Motion Controller to 2D points in pixels of the
projector image. Calibration process consists of mea-
suring points and computing intrinsic (projector’s focal
length and principal point) and extrinsic parameters
(mutual position and rotation of projector and Leap
Motion) of the projector from those points. From these
parameters, we can compose matrices using which we
can transpose the points from 2D projector pixel coor-
dinate space into 3D Leap Motion metric coordinate
space and the other way around. Based on this, we can
modify the projected image.

As already stated, in our setup Leap Motion - pro-
jector, the Leap Motion poses as pre-calibrated camera,
thus Leap does not need any sort of calibration. To
calibrate the projector we need to establish set of pairs
of corresponding 2D and 3D points. Set of 2D points
in pixels of the projector image is defined on known
positions. For each of them we need to find the cor-
responding 3D points from Leap Motion coordinate
system. This can be done as shown in figure 2. The
fingers tracked by Leap Motion then have to point on
defined projected points in the image of the projector.
This will give us the corresponding 2D points.

We will then compute the extrinsic and intrinsic
parameters. The translation between 2D and 3D points
is shown in equations 1 and 2.

sm' = A[R[t()M’ (1)

X
u fi O of |1 r2 r3 t v
sivi=10 fy ¢ |ra1 r2 rn3 b 7
1 0O O 1 31 I3 133 13 1
)

A - intrinsic parameters matrix

[R|t] - extrinsic parameters matrix; relative posi-
tion and rotation of projector and Leap Motion

(X,Y,Z) - coordinates of a 3D point in the world
coordinate space

(u,v) - coordinates of the 2D projection point in
pixels

(cx,cy) - principal point that is usually at the
image center

fx, fy - focal lengths expressed in pixel units

An initial estimation of the intrinsic matrix can
be used for the the calibration computation. These
parameters are used in the initial intrinsic matrix:

1. ¢ - half of the width of the projector’s image in
pixels

2. ¢y - half of the height of the projector’s image in
pixels

3. fx, fy - focal length expressed in pixel units de-
termined for the projector used in the interface
(Asus S1)

The initial estimated intrinsic matrix (equation 3)
determined for the projector Asus S1 (section 3):

fo 0 e 962 0 400
0 f, c|=]0 962 300 3)
0 0 I 0 0 1

Next paragraph describes the process of calibration.

The prepared 3*3 matrix of 2D points is projected
into the projector image as shown in figure 2. For
each of those points, user has to put a finger on it for
second after which the point disappears and the finger’s
location is saved. This gives us their corresponding
position in Leap Motion 3D coordinates. Let’s call
process of projecting and scanning of 3*3 points a

calibration run. We can choose how many of those
calibration runs should be carried out according to
required precision. For the calibration to work not only
in the projector image plane but above it, it is important
to put finger on the projected points in different heights
above the desk. The calibration process can be seen in
Demonstration Video.

Figure 2. Example of the calibration process - user
puts his finger on the projected points in order to get a
corresponding points in space.

Easy way of finding out precision of the calibration
is to translate position of user’s index finger from Leap
Motion coordinates into projector coordinates then
draw a point on this position so that user can easily see
how precise the final calibration is.

Interface setup (figure 3) contains:

Leap Motion Controller

projector Asus S1, using resolution 800x600
tripod for projector and Leap Motion

desk covered with black canvas

Leap Motion is primarily intended to be used in
lying vertical position, tracking hands above it. This
way it gives the best results. Problem is if we want to
use the Leap Motion against some kind of surface such
as a desk. The issue is not the upside down position
of controller but that it is used against a surface and
not a empty area. Leap Motion uses infrared cameras
and the light from them reflects from the surface of
the table which results in too much distortion for Leap
Motion to work properly. That is why important part of
the setup is the black canvas which absorbs the exces-
sive light and enables Leap Motion to work. Although
black canvas is not very good surface to project onto
as it absorbs the light emitted from projector as well.

Projector

Leap Motion

A

Figure 3. Interface setup - Leap Motion and projector
both point on the table. After successful calibration,
there will be workspace area between the table and
Leap Motion in which user can control applications
and games using his hands.

Both the Leap Motion and the projector must be
stationary. Movement of any of those after successful
calibration causes an incorrect result, because the cal-
culated parameters of their mutual position would not
be correct anymore.

The calibration software was developed in Python pro-
gramming language. It uses PyQt library for the graph-
ical interface. Main computation related with calibra-
tion is done using OpenCV library [3]. This language
and libraries were chosen for their easy and flexible
usage and ability to be run on all common platforms
such as Windows and Linux.

To compute calibration matrices from input points,
software uses OpenCV’s method calibrateCamera().
Projecting points onto user’s finger, used as a fast pre-
cision test, is done with projectPoints() method.

For more information about OpenCV calibration
methods please read here '.

To find out the exact precision of the calibration, we
use reprojection error (more about reprojection error
here [4]). Similarly to the calibration phase, software
projects points on known coordinates in projector im-
age. Instead of 3*3 matrix it uses 5*5 matrix. For each
point, again the same way as during calibration, it gets
corresponding point in 3D space. Then, for each of the
3D points it computes difference between where the
point should have projected (the initially chosen posi-
tion in projector image) and where the point projected
using projectPoints(). Final reprojection error gives
overall average error across all the measured points
(equation 4).

err = 7Zd(xi’xi)2 4)
n

e err - final reprojection error

e d - euclidean distance

e x; - coordinate where the 3D point should have
projected

e X; - coordinates where the 3D point really pro-
jected

e 1 - count of all measured points

These are the results of reprojection error for dif-
ferent number of measured points (table 1). Problem
with getting better precision is that it depends on user’s
ability to precisely put his finger onto projected points
not only in plane of projector’s image but also above
it. Thus resulting coordinates from Leap Motion are
only as precise as user can get.

Table 1. Average value of reprojection error in
accordance with different number of measured pairs
of points

Point count 9 27 45

Reprojection error (mm) | 16.2084 |10.5922 |13.6603

Table 1 shows that the best precision i was able
to achieve was when using 27 points as calibration
input. Naturally precision should get better with more
provided points. But after extensive testing best result
was still achieved with 27 points when each calibration
run was done in different height above the table. This

Mttp://docs.opencv.org/modules/
calib3d/doc/camera_calibration_and_3d_
reconstruction.html

Figure 4. Example of how the game is played. The
spaceship moves in front of user’s index finger.

is probably because, as already stated, this calibration
is strongly dependant on user’s precision which gets
worse after many measured points. Nevertheless i plan
to further address this problem in future testing.

I developed the game in order to show capabilities of
the proposed interface. It was developed in Unity 3D
engine which has means provided from its creators to
use it in combination with Leap Motion. The game is
based on this sample project > from which it uses all
the needed models and sounds. It is a simple space
arcade, in which the player controls a spaceship flying
through different obstacles.

Every part of the game can be controlled using
hand movements and gestures. The spaceship is posi-
tioned in front of user’s index finger as can be seen in
figure 4.

The game provides two different control inputs.
The chosen type affects the way user interact with
menu buttons and how he can shoot from the space
ship. I plan to find out which one is more user friendly
after user testing.

o Clicking - This type of control input is common
for modern devices such as smartphones, tablets
and other touch screens. Therefore it could be
intuitive for users.

e Pointing - Due correct calibration, the whole
empty space above the projector image can be

2http://unity3d.com/learn/tutorials/
projects/space-shooter

http://docs.opencv.org/modules/calib3d/doc/camera_calibration_and_3d_reconstruction.html
http://docs.opencv.org/modules/calib3d/doc/camera_calibration_and_3d_reconstruction.html
http://docs.opencv.org/modules/calib3d/doc/camera_calibration_and_3d_reconstruction.html
http://unity3d.com/learn/tutorials/projects/space-shooter
http://unity3d.com/learn/tutorials/projects/space-shooter

used for interaction. This control input provides
the user a way to activate a menu button without
touching it. User only needs to point onto it for
a while (0.7 sec in default setting) to active it, in
any height above the table.

Design of the ingame menu was done in accor-
dance with *. Menu buttons are large and user gets
visual feedback when selecting it. Because this inter-
face is used differently, menu buttons are arranged in
reverse order to the usual one as shown in figure 5.
The buttons closer to the user should be easier to reach,
so more frequently used buttons are at the bottom of
the screen and not at the top.

Settings

HighScore

Figure 5. Ingame menu - the buttons are in reverse
order than usual. That makes the more often choices
more accessible for users.

The game can be seen in Demonstration Video.

In this paper was introduced a new kind of control inter-
face using the Leap Motion Controller and a projector.
The interface allows to control games and applications
using user’s hand directly within the projected image.
This is achieved with unique projector calibration on
which is the interface based.

The smallest achieved calibration error is about
10.5 mm. The precision of the calibration strongly
depends on the precision of the measured input points.

Black canvas is used to deal with an excessive
light from the Leap Motion that leads to problems
with using Leap against a desk surface. The developed
software including both the calibration and the game
is freely released to be experimented with.

3https://developer.leapmotion.com/
documentation/csharp/practices/Leap_Menu_
Design_Guidelines.html

Interesting way to continue the research would be
to increase the calibration precision by using better
input of 3D space coordinates than is user’s hand for
instance by using robotic arm. Next, it would be use-
ful to solve the detection problem against surfaces in
some other way than by using black canvas, because it
absorbs not only Leap’s light but also the light emitted
from the projector.

I would like to thank my supervisor Jiri Zahradka for
guidance and useful comments.

[1] Zhengyou Zhang. A flexible new technique for
camera calibration. [IEEE Trans. Pattern Anal.
Mach. Intell., 22(11):1330-1334, November 2000.
http://research.microsoft.com/
en-us/um/people/zhang/Papers/
TRO98-71.pdf/.

[2] Joan Massich Gabriel Falcao, Na-
talia Hurtos. Plane-based calibration
of a projector-camera system. 2008.

https://procamcalib.googlecode.
com/files/ProCam_Calib_v2.pdf.

[3] G. Bradski. The opencv library. Dr. Dobb’s Jour-
nal of Software Tools, 2000. http://opencv.
org/.

[4] Richard Hartley and Andrew Zisserman. Multiple
View Geometry in Computer Vision. Cambridge
University Press, New York, NY, USA, 2 edition,
2003.

https://developer.leapmotion.com/documentation/csharp/practices/Leap_Menu_Design_Guidelines.html
https://developer.leapmotion.com/documentation/csharp/practices/Leap_Menu_Design_Guidelines.html
https://developer.leapmotion.com/documentation/csharp/practices/Leap_Menu_Design_Guidelines.html
http://research.microsoft.com/en-us/um/people/zhang/Papers/TR98-71.pdf/
http://research.microsoft.com/en-us/um/people/zhang/Papers/TR98-71.pdf/
http://research.microsoft.com/en-us/um/people/zhang/Papers/TR98-71.pdf/
https://procamcalib.googlecode.com/files/ProCam_Calib_v2.pdf
https://procamcalib.googlecode.com/files/ProCam_Calib_v2.pdf
http://opencv.org/
http://opencv.org/

	Introduction
	Projector calibration
	Hardware setup
	Calibration software
	Evaluation
	Demonstrational game
	Conclusions
	References

