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Abstract
Many genetic mutations are single nucleotide polymorphisms (SNPs), i.e. variations at a single
position in a DNA among individuals. Significant number of genetic diseases is caused by non-
synonymous SNPs manifested as single point mutations on the protein level. The ability to identify
deleterious substitutions could be useful for protein engineering to test whether the proposed
mutations do not damage protein function same as for targeting disease causing harmful mutations.
However the experimental validation is costly and the need of predictive computation methods
has risen. Here we introduce a new in silico predictor based on the principles of evolutionary
analysis and dissimilarity between original and substituting amino acid physico-chemical properties.
Developed algorithm was tested on four datasets with 74,192 mutations from 16,256 sequences
in total. The predictor yields up to 72% accuracy and in the comparison with the most existing
tools, it is substantially less time consuming. In order to achieve the highest possible efficiency, the
optimization process was focused on selection of the most suitable (a) overall decision threshold,
(b) third-party software for calculation of a multiple sequence alignment and (c) a set of decision
features / physico-chemical properties. To cope with the last mentioned problem, two feature
selection methods were tested on the database of 544 possible properties.
Keywords: Amino acid substitutions — Phylogenetic analysis — Mutations — Mutation effect
prediction
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1. Introduction

Non-synonymous single nucleotide polymorphisms
(SNPs) can have severe effect on protein functionality.
A lot of genetic diseases are caused by single point nuc-
leotide mutation such as cystic fibrosis or sickle cell
anemia. The identification of potentially deleterious

mutations could also be useful for protein engineering
to test whether the proposed mutations do not damage
protein function. Since the experimental validation is
costly, laborious and time consuming, the application
of computational approach is highly desirable.

In recent years, several tools for predicting the ef-
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fect of amino acid mutations on protein function were
developed. A considerable amount of these prediction
tools is based on very complex machine learning meth-
ods integrating time demanding calculations of fea-
tures like secondary structure at the point of mutation
or solvent accessibility of original residue. However,
the recent study [1] has demonstrated, that the compa-
rable results can be achieved by much faster and more
transparent method [2] employing only phylogenetic
analysis for calculation of sequence weights from phy-
logenetic tree and basic amino acid properties. The
main aim of this study is to propose and develop a
new predictor of deleteriousness of protein mutations
utilizing this successful concept. Moreover, optimiza-
tion in the terms of different multiple-alignment soft-
ware, p-value1 thresholds or selected subset of physico-
chemical properties will be presented.

2. Methods
2.1 Design of new prediction tool
The design of new prediction tool was inspired by
MAPP algorithm, originally developed in 2005 by
Stone and Sidow [2]. The prediction core of this tool
is based solely on the phylogenetic analysis and dif-
ferences in physico-chemical properties between wild-
type and mutant amino acid. In MAPP algorithm, the
following properties were employed: hydropathy [3],
polarity [4], charge [4], side-chain volume [5], free
energy in α-helical conformation [6] and free energy
in β -sheet conformation [6].

The phylogenetic analysis requires the multiple-
sequence alignment and phylogenetic tree with branch
lengths. To construct these inputs, the need of using
third-party software occurred. CLUSTALΩ [7] and
FastTree [8] were employed to construct these inputs.
BLASTp [9] was applied to choose 200 homologs with
e-value 10−12 from nr90 database [10]. This database
contains amino acid sequences from all species with
less than 90% sequence identity to reduce highly sim-
ilar cases which could bias the predictions. In case
of proteins with more than 200 homologs, selection
is performed uniformly across whole set of hits meet-
ing the criteria and sorted by e-value. The pipeline
and associated threshold for calculation of alignment
and tree was inspired by workflow of HotSpot Wizard
tool [11] for calculation of conservation of individual
residues.

The output of FastTree method is an unrooted tree.
Since the algorithm requires the rooted form of phy-
logenetic tree as an input, the transformation needs to

1p-value: stands for significance level of the statistical t-test
where null hypothesis is ”mutation is neutral”

be done. To accomplish such a task, mid-point rooting
method was used.

With rooted phylogenetic tree constructed, the im-
pact score of each possible amino acid mutation at each
position in a multiple-sequence alignment is given by
the following steps:

• Based on the topology and branch lengths of
the tree, the weights are calculated for each se-
quence to obtain the phylogenetic correlation
among all sequences. This is performed by
Felsenstein’s algorithm [12] that calculates the
weighted average of the ”best weights” obtained
by rooting the tree at the midpoint of each branch.
• The sequence weights are multiplied by the rel-

ative frequency of each amino acid occurring
at analyzed position to obtain ”alignment sum-
mary” matrix.
• This summary is interpreted using a matrix of

physico-chemical properties. Such an interpre-
tation is expressed by multiplication of align-
ment summary matrix with matrices of physico-
chemical properties.
• Constraint violation is measured for each po-

sition of the sequence. Dissimilarity scale be-
tween original and substituting amino acid in
combination with conservation rate (obtained
by previous steps) yields the probability that
substituting amino acid is neutral.

2.2 Testing datasets
The testing of our tool was performed on four datasets.
The MMP dataset consisted of 13 massively mutated
proteins, 11 from Yampolsky and Stoltzfus study [13]
and two from patent applications issued by Danisco
Inc. [14] [15]. The PMD dataset was obtained as the
subset of PMD database [16] (last update in 2007) and
comprises 1,406 sequences. The BSIFT dataset was
taken from the study of Lee at al. [17] and it consists
of a diverse set of experimentally described mutage-
nesis experiments extracted from Swiss-Prot database
[18]. PredictSNP dataset [1] was compiled from five
different sources containing 10,081 sequences in total.
All four datasets together with the number of neutral
and deleterious mutations are summarized in Table 1.

2.3 Design of experiments
Performance evaluation was measured on all MMP,
PMD, BSIFT and PredictSNP datasets. The multiple
sequence alignments and phylogenetic trees were cal-
culated by CLUSTALΩ and FastTree at first. In order
to achieve the best possible success rate, the following
options were tested:



Table 1. Summary of testing datasets.

Datasets Mutations Sequences
Neutral Deleterious All

MMP 7,538 4,456 11,994 13
PMD 1,248 2,249 3,497 1,406
BSIFT 3,081 11,738 14,819 4,036
PredictSNP 24,082 19,800 43,882 10,801
Summary 34,921 43,729 74,192 16,256

• Two different third-party software for construc-
tion of multiple-sequence alignment: CLUSTALΩ

and MUSCLE.
• Two thresholds of e-value {10−6,10−12} and

four thresholds of maximum number of homologs
{50,100,150,200} to select the most suitable
set of homolog sequences by BLASTp.
• Ten decision thresholds of native prediction al-

gorithm responsible for assigning mutations to
deleterious / neutral subset; these thresholds
were chosen from the interval <0.01, 0.1> with
the step of 0.01.
• Two feature selection methods (information and

experiment based).

3. Results
3.1 Performance of the new tool
Table 2 shows the merged results measured on Pre-
dictSNP, MMP, PMD and BSIFT datasets. These re-
sults were obtained with using CLUSTALΩ in con-
figuration for 50, 100, 150 and 200 homologs from
BLASTp with e-value 10−6 and 10−12. According
to the achieved results, all sets of experiments with
e-value 10−12 showed better normalized accuracy than
those with e-value 10−6, approximately about 0.01.
The best results were observed for variants with 100
and 200 homologs (0.667 in both cases). The average
coverage2 ranged from 0.704 to 0.788. The reason
of low coverage is twofold: (a) for some protein &
homology search settings, BLASTp was not able to
find any homologs and therefore the alignment & tree
could not be calculated and (b) mutations on positions
with more than 50% gaps were omitted. The signif-
icant influence of exclusion of gap-rich positions is
clearly visible in the results as the sets of experiments
with e-value threshold 10−12 achieved systematically
higher coverage, about 0.03 on average, against the
experiments with e-value threshold 10−6. It is caused
by the fact that less strict e-value threshold brings more
distant homologs to alignment and more gaps occur.
Similarly, the number of gaps increases together with

2Coverage: ratio of successfully evaluated mutations

the alignment size – e.g. for PredictSNP dataset, there
were 72% and 80% of gaps in the alignment matrix of
50 and 200 homologues, respectively.

Table 2. Prediction accuracy of developed prediction
tool implementation with p-value threshold set on 0.01
and default set of six decision features. Results are
merged for PredictSNP, MMP, PMD and BSIFT
datasets, using CLUSTALΩ for multiple-sequence
alignment.

e-val. 50 100 150 200

1e-6 TN3 22,164 21,458 20,621 20,277
FP4 3,670 3,331 3,206 3,152
TP5 13,773 13,274 12,926 12,882
FN6 16,900 16,462 16,108 15,921

Coverage 0.762 0.735 0.712 0.704
Accuracy 0.636 0.637 0.635 0.635
Acc. norm.7 0.653 0.656 0.655 0.656

1e-12 TN 22,730 22,038 21,319 20,901
FP 4,228 4,165 4,057 3,909
TP 15,218 15,082 14,463 14,332
FN 16,303 15,560 15,363 14,863

Coverage 0.788 0.766 0.744 0.728
Accuracy 0.649 0.653 0.648 0.652
Acc. norm. 0.663 0.667 0.663 0.667

3.2 Influence of different multiple-sequence
alignment tools

Developed tool was extensively tested to find the most
suitable third-party sequence alignment software. The
comparison was performed between MUSCLE and
CLUSTALΩ. An experiment with utilization of MUS-
CLE for multiple sequence alignment construction was
performed, again with the different configurations of
BLASTp. Table 3 and Table 4 show a comparison
between these two tools on the MMP dataset. The
results yields that the MUSCLE achieved higher ac-
curacy, approximately about 0.001 on average. The
increase is even higher for the desired configuration
(200 homologs, e-value 10−12) where it attained 0.008.
However, this negligible increase is at the expense of
unacceptably high increase of the time requirements.

3TN: number of neutral mutations predicted as neutral
4FP: number of neutral mutations predicted as deleterious
5TP: number of deleterious mutations predicted as deleterious
6FN: number of deleterious mutations predicted as neutral
7Acc. norm.: is insensitive to the problem of inbalance of the

evaluated datasets. Calculated as [T P/(T P+FN)+T N/(T N +
FP)]/2



Table 3. Performance of developed prediction tool
with different integrated multiple-sequence alignment
software. New prediction tool was used with default
threshold 0.01 and default properties.

Software Size/eval. 50 100 150 200
CLUSTALΩ 1e-6 0.680 0.680 0.678 0.676

1e-12 0.679 0.702 0.687 0.688

MUSCLE 1e-6 0.681 0.680 0.676 0.676
1e-12 0.695 0.700 0.676 0.696

Table 4. Comparison of alignment software in terms
of time requirements. New prediction tool was used
with default threshold 0.01.

Software Size/eval. 50 100 150 200
CLUSTALΩ 1e-6 15 s 39 s 41 s 57 s

1e-12 11 s 30 s 36 s 48 s

MUSCLE 1e-6 70 s 253 s 435 s 715 s
1e-12 60 s 211 s 367 s 606 s

3.3 Influence of different threshold configura-
tions

All previously mentioned results were acquired with
the default p-value decision threshold 0.01. How-
ever, the analysis of these results in Table 2 revealed
large number of false positives. It raised the ques-
tion whether it is possible to improve the accuracy by
increasing of p-value threshold. Figure 1 shows the
change in accuracy for PredictSNP dataset with the
decision threshold set on 10 different values from the
interval <0.01, 0.1>.

The obtained results suggest that the higher thresh-
old provides better accuracy than the default threshold
of 0.01. More specifically, there is up to 1.6% accu-
racy growth in MMP dataset with the two maxima
around the threshold of 0.05 and 0.08 and up to 2.6%
accuracy growth in PredictSNP dataset with the max-
imum around 0.08. We can conclude that the higher
threshold can significantly improve the normalized ac-
curacy of prediction. However, the decision about the
most suitable p-value threshold should be adjusted to
the intended purpose. In some applications, the value
of sensitivity metrics (ratio of correctly recognized
deleterious mutations) is more important than the nor-
malized accuracy. The differences between sensitivity
and specificity can be observed in Figure 1 (detail in-
formations are available in supplements as Table 5 and
6).

3.4 Influence of exclusion of gap-rich positions
In the process of performance evaluation, only posi-
tions with lower than 50% gaps in the column of align-

Figure 1. The influence of different p-value threshold
in prediction accuracy (measured on PredictSNP
dataset).

ment were taken into account. This raises a question
whether such limitation affects the prediction accuracy.
In the MMP dataset, there is just a slight difference
in the final results. In PredictSNP dataset, the drop
of accuracy is approximately 1% if condition of at
least 50% of non-gaps is ignored. In conclusion, the
condition of at least 50% non-gaps in the column of
multiple-sequence alignment does not have a negative
influence on the final accuracy.

3.5 Influence of different sets of properties
Up to this point, all experiments were processed with
the properties mentioned in 2.1. In this section we
are focusing on the question, if the accuracy can be
further increased by choosing a different set of physico-
chemical properties from AAindex database [19]. This
is a multidimensional problem as there are 544 highly
redundant properties in AAindex database. To cope
with this problem, the advanced techniques of feature
selection were applied.

First approach was based on the idea of selecting a
subset of properties with high orthogonality. To prove
this idea, 544 properties from AAIndex were clustered
by K-means algorithm [20] into {5,6,7,8,9,10} clus-
ters and 20,000 of experiments were proceeded on
MMP dataset for each cluster count by random se-
lection of one property from each cluster at one time.
From Table 5 it can be seen that the best results were
obtained with five clusters generated by K-means al-
gorithm. However the comparison with the implemen-
tation utilizing the original set of six expertly chosen
properties revealed that this method is inefficient since
the obtained accuracy is worse about 0.034 (0.663
versus 0.697).



Table 5. Summary of the best results obtained with
{5,6,7,8,9,10} clusters (measured on MMP dataset)
New prediction tool was used with default threshold 0.01.

Clust. count 5 6 7 8 9 10
Accuracy 0.663 0.651 0.652 0.660 0.658 0.656

Second approach utilized experiment based meth-
ods, more specifically the combination of forward se-
lection (FS) and backward elimination (BE). The main
disadvantage of FS method lies in its non-recovery
factor. In the experiment performed on MMP dataset
purely by FS, the algorithm tended to select the feature
that had raised the best results independently but have
been distortive in the combination with the others. To
cope with this problem the following method was de-
signed. At first, the FS process selects 25 properties.
This upper bound was set as an acceptable trade-off
between the time demands and the size of a feature
space for following BE. With the utilization of BE, this
subspace of features is analyzed by successive reduc-
tion to the number of 5 features. FS is then processed
again starting from the subset of properties, where BE
obtained the best accuracy. The lower bound of 5 fea-
tures was determined experimentally as the minimum
number providing quality results and it is just slightly
lower than usual number of features used in the most
of the existing predictors based on machine learning
approaches. FS and BE is processed continuously in
several iterations.

Described algorithm is computationally costly and
calls for massive parallelization, but only after four
iterations the selected subset of 13 features has led
to improvement approximately 2.4% with decision
threshold 0.1 (69.7% up to 72.13% on MMP dataset).
Comparison of the RAPHYD algorithm (in both vari-
ations - 6 / 13 properties) with existing tools can be
observed in Table 6.

4. Conclusions & Outlook
• The new predictor of the effect of amino acid

substitutions on protein function was developed.
The decision core is based on the complex phy-
logenetic analysis and the differences in the
physico-chemical properties.
• The extensive evaluation on the four datasets

revealed that the best trade-off between nor-
malized accuracy and time consumption was
provided by CLUSTALΩ (third-party software
for multiple-sequence alignment) launched on
maximum 200 homolog sequences from nr90
database found by BLASTp with e-value thresh-

Table 6. Comparison of RAPHYD algorithm with
existing tools on MMP dataset evaluated in [1].
RAPHYD is presented in two variations - 6 / 13
physico-chemical properties.

Tool nsSNPAnalyzer PANTHER PhD-SNP PPH-1 PPH-2

TN 4,264 4,336 3,739 4,390 3,518
FP 2,687 834 3,798 3,053 3,925
TP 2,510 329 3,399 3,330 3,769
FN 1,518 1,428 1,058 944 505

Coverage 0.915 0.619 1.000 0.977 0.977
Accuracy 0.617 0.695 0.595 0.659 0.622
Acc. norm. 0.618 0.603 0.629 0.684 0.677

Tool SIFT SNAP PredictSNP RAPHYD - 6 RAPHYD -13

TN 2,887 5,338 4,291 4,658 5,719
FP 4,463 2,200 3,247 2,541 1,480
TP 3,675 3,163 3,773 3,244 2,820
FN 416 1,293 683 1,104 1,528

Coverage 0.954 1.000 1.000 0.963 0.963
Accuracy 0.574 0.709 0.672 0.684 0.739
Acc. norm. 0.646 0.709 0.708 0.697 0.721

old 10−12.
• The change of default p-value threshold, respon-

sible for assigning the mutant amino acids to
potentially neutral and deleterious subsets, led
to significantly improved prediction accuracy.
The highest improvement of prediction is about
2% for p-value threshold set on 0.08 (tested on
both PredictSNP and MMP datasets).
• The exclusion of gap-rich positions having more

than 50% gaps in the column of alignment did
not exhibit any negative effect on the prediction
accuracy.
• The combination of experiment-based methods

(forward selection & backward elimination) re-
sulted in the set of 13 attributes with the increase
of accuracy about 2.4%.
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