
20
15

http://excel.fit.vutbr.cz

Fast Reconstruction of Photoacoustic Images
Filip Kuklis*

Abstract
The ability of reconstruction of photoacoustic images is important requirement to study soft tissues
or vascular and lymphatic systems in high resulution but in small space. Today solution needs
extensive computing power and it is noticeably time-consuming. In this study we would like to
introduce a new solution which would be a way much faster and easy to use. My solution is up
to twenty times faster and needs forty percent less memory than existing solution in Matlab. This
solution may be a better alternative for scietnist who study soft tissues by photoacoustic imaging.

Keywords: Photoacoustic — Ultrasonic — Imaging — HPC — Parallel computing — Vectorisation

Supplementary Material: Downloadable Code
*xkukli03@stud.fit.vutbr.cz, Faculty of Information Technology, Brno University of Technology

1. Introduction

[Motivation] This work is a part of international project
k-Wave which is designed for time domain acous-
tic and ultrasound simulations in complex and tissue-
realistic media. The main goal is to optimize and accel-
erate current solution of photoacoustic imaging which
is written in Matlab. Ultrasonic detection of thermal
expansion created by laser today takes approximately
fifteen to twenty minutes. Photoacoustic reconstruc-
tion in good resolution takes another fifteen minutes.
We want to decrease reconstruction time to minimum
in order to see result as soon as posible.

[Problem definition] Time reversal image recon-
struction
Photoacoustic images are reconstructed from the de-
tected photoacoustic signal using a time-reversal image
reconstruction algorithm, which compensates for the
frequency dependent acoustic attenuation exhibited
by soft tissues. The algorithm uses a pseudo-spectral
(k-space) acoustic propagation model to simulate the
retransmission of the measured photoacoustic signals

into the domain in time-reversed order. The photoa-
coustic waves then refocus to yield an image of the
initial pressure distribution.[1]

[Existing solutions] Complex but slow
The current solution is written in Matlab. This solution
is described by mathematic formulas and mathematic
operations and works with ultrasonic signal. The ad-
vantage of this solution is its universiality. It is general
and any type of input can be used. The main disad-
vantage is that this solution is too slow and uses too
much primary storage of computer memory. Other dis-
advatages are that at higher resolution Matlab takes so
much memory that some of the calculations can not be
done, or parallelization of computing is not balanced
on architectures with more CPUs. The main operations
taking the most time are the Fourier transform, inverse
Fourier transform and a trilinear interpolation.

[Our solution] C++ plus paralelism
The proposed solution is based on a hardware friendly
code which is parallelized. It is written in C++, and
OpenMP is used to parallelize the code. The code
is not so complex and universal as the Matlab solu-

http://excel.fit.vutbr.cz
http://pcjaros-gpu.fit.vutbr.cz/xkukli03/fast-reconstruction-of-photoacoustic-images/tree/master/bakal/kspace
mailto:xkukli03@stud.fit.vutbr.cz

tion, but it is specialized for one thing, photoacoustic
imaging. It is as simple as possible with many optimal-
isations. Main disadvantage is that input files have to
be saved from Matlab, then open in program and then
the output have to be saved and open in Matlab to be
plotted.

[Contributions] Quick and fluffy
My solution takes about 40% less memory than the
existing Matlab solution. However what is more im-
portant, it is ten to twenty times faster (depends on
used resolution). Now the scientists can see results in
a very good resolution in less than one minute.

2. Theoretical background

2.1 Photoacoustic imaging

Figure 1. Input signal data recorded outside the
tissue.

A photoacoustic imaging is an emerging technique
which can provide label-free non-invasive three- di-
mensional image of the vasculature to the depths of
several cm with a spatial resolution ranging from tens
to hundreds of microns (depending on the depth). It is
based upon the generation of ultrasound waves through
the absorption of nanosecond laser pulses by light
absorbing tissue chromophores. The acoustic waves
travel to the tissue surface where they are detected by
an ultrasound receiver array. From the detected signals,
the three dimensional (3-D) images (which are propor-
tional to the absorbed optical energy distribution) can
be reconstructed. An image reconstruction is based on
the acoustic time reversal algorithm.[1]

3. Methods

3.1 Stand-alone program
The C++ solution is implemented as a stand-alone
program. An alternative was a mex function in Mat-
lab (built-in function). Its main advantage is passing

Figure 2. Result, reconstructed image of a mouse
embryos in vivo. Original input data.

Figure 3. Result, reconstructed image of a mouse
embryos in vivo. 64x upsampled input data.

arguments without saving them to hard drive. A stan-
dalone program was choosen because we wanted in-
dependence from Matlab. The problem with passing
arguments by hard disk can be eliminated by using ssd
(solid state drive) or RAMDISK.

3.2 HDF5

HDF5 is a file format designed to store and organize
large amounts of numerical data. It is used for passing
arguments from Matlab to a stand-alone C++ program.
It is supported by Matlab and there is a library for C++.

3.3 Parallelization and vectorisation
OpenMP was used to parallelize and vectorize the
code. OpenMP is a specification for a set of compiler
directives, library routines and environment variables
which can be used to specify high-level parallelism in
Fortran and C/C++ programs.[2]

3.4 High performance fascilities
All work was done on Anselm, a supercomputer clus-
ter in Ostrava, Czech Republic. The Anselm cluster
consists of 209 compute nodes, totaling 3 344 com-
pute cores with 15TB RAM and giving over 94 Tflop/s
theoretical peak performance. Each node is a power-
ful x86-64 computer, equipped with 16 cores, at least
64GB RAM and 500GB hard drive.[3]

The compute node used for testing consists of two
eight-core Intel Sandy Bridge E5-2665 processor and
64GB memory. Processors support Advanced Vector
Extensions (AVX) 256-bit instruction set.

Intel Sandy Bridge E5-2665 Processor:

• eight-core
• speed: 2.4 GHz, up to 3.1 GHz using Turbo

Boost Technology
• peak performance: 19.2 Gflop/s per core

3.5 Testing
PAPI (Performance Application Programming Inter-
face) was used to measure various performance in-
dicators such as time, FLOPS(FLoating-point Opera-
tions Per Second) or distribution of load on CPU cores.
Rusage(Resource usage) was used to measure memory
use.

4. Implementation

4.1 Analysis and implementation of Matlab code
Matlab Profiler was used for analysis of individual
lines of the code. At first, the data was saved before
and after line that was implemened in C++ on one core
and outputs are compared. After that the C++ code was
parallelized and optimalized for the hardware. At the
end, the solution was tested and measured. The lines
which take the most time in the code were selected at
first.

Table 1. Lines which take most time

Line

Vq = F(Xq,Yq,Zq); (1)
p = sf.*fftshift(fftn(fftshift(p))); (2)
p = real(ifftshift(ifftn(ifftshift(p)))); (3)

In the Table 1 the first line is part of trilinear inter-
polation of three-dimensional data. Data are interpo-
lated only in one direction, in one coordinate axis. The
second and third lines are shifts and forward or inverse
fourier transforms.

Trilinear interpolation. Trilinear interpolation
was implemented to interpolate only in one direction.
It was paralelised and searching for nearby points was
optimized for input data.

Shifts. Data is swaped between two parts of mem-
ory in this part. This part is also paralelised. Data
is read in sequence from memory to improve perfor-
mance. Speed of shifts depends on memory speed,
too.

Fourier transform. The FFTW3 library was used
for forward and inverse fourier transform. FFTW3
plans can be saved to a file and reused for another data
input. FFTW3 uses SIMD vectorisation by SSE or
AVX.

5. Testing

All tests were done on one node(2 CPUs, 16 cores).
64x upsampled data was used for testing. In Figure 4
you can see comparison even with 8x and 1x upsam-
pled data. In the Table 2 you can see comparation be-
tween Matlab and C++ solution. In Figure 4 can be see
that on sixteen cores the code is approximately eleven
times faster than on one core. In the Table 3 we can see
the flat profile of the C++ solution and performance
of single functions in FLOPS. Forward and inverse
Fourier transform from FFTW3 library provide around
33,000 MFLOPS which is real peak performance you
can get with this size of dimensions. Interpolation
gives almost maximum performance without vectori-
sation. The theorethical peak performance you can get
with LINPACK but no with real complex code.

Table 2. Comparison between of the C++ and Matlab
solution. Acceleration and decrease of memory needs
on one node(2 CPUs, 16 cores).

Existing solution
Input data

scale
Computing time
existing solution

Memory allocation
existing solution

1x 6 s 2.7 GB
8x 64 s 20 GB
64x 999 s 120 GB

New solution
Input data

scale
Computing time

new solution
Memory allocation

new solution
1x 0.45 s 1.1 GB
8x 4.7 s 8.5 GB
64x 46.4 s 67.5 GB

 1 2 4 8 16

1024

 256

 64

 16

 4

 1

 0

Figure 4. Concurrency and scalability of threads(1, 2,
4, 8, 16) for 64x, 8x and 1x upsampled data. Time
decrease almost linearly with more threads.
Table 3. The flat profile of computing, 64x upsampled
input data. Some of the most important functions.

Function Time MFLOPS
Fourier transform 5.09 s 33,224.3

inv. Fourier transform 5.17 s 32,614.5
Interpolation 27.22 s 20,661.3

Shift 1.26 s 0.000258
Inverse shift 1.25 s 0.000447

Whole computing 46.40 s 19,384.4

In the Table 3 can be seen the most important
functions, their computing time and MFLOPS. Shifts
work with memory hence FLOPS should be zero, there
is a measurement error. Other functions uses 7 to 10
percents of theorethical peak performance of the CPUs.
In the Table 2 you can see that C++ solution is many
times faster than Matlab one.

6. Conclusions
[Paper Summary] This study has shown that photoa-
coustic imaging implemented in Matlab can be accel-
erated and optimised by using hardware-friendly code.

[Highlights of Results] C++ solution can be up to
twenty times faster than Matlab solution. It reaches
seven to ten percent of theorethical performance of
CPU, which is nearly maximum for real application
without vectorisation.

[Paper Contributions] The ability to obtain high
resolution images of the vasculature or soft tissues
many times faster than reference solution in Matlab.

[Future Work] The work will be used as a part k-
Wave and can be even more optimized by vectorisation.

7. Acknowledgment
I would like to acknowledge the support of Jiri Jaros.

This work was supported by the IT4Innovations
Centre of Excellence project (CZ.1.05/1.1.00/02.0070),
funded by the European Regional Development Fund
and the national budget of the Czech Republic via
the Research and Development for Innovations Op-
erational Programme, as well as Czech Ministry of
Education, Youth and Sports via the project Large Re-
search, Development and Innovations Infrastructures
(LM2011033).

References
[1] Jan Laufer Francesca Norris Jon Cleary Edward

Zhang Bradley Treeby Ben Cox Peter Johnson
Pete Scambler Mark Lythgoe and Paul Beard. In
vivo photoacoustic imaging of mouse embryos,
2012.

[2] OpenMP ARB Corporation. What is
openmp, 1997-2013. http://openmp.
org/openmp-faq.html.

[3] It4Innovations. Anselm cluster documen-
tation, 2014. https://docs.it4i.cz/
anselm-cluster-documentation.

http://openmp.org/openmp-faq.html
http://openmp.org/openmp-faq.html
https://docs.it4i.cz/anselm-cluster-documentation
https://docs.it4i.cz/anselm-cluster-documentation

	Introduction
	Theoretical background
	Methods
	Implementation
	Testing
	Conclusions
	Acknowledgment
	References

