
20
15

http://excel.fit.vutbr.cz

Braille Reader on Mobile Device
Jan Krušina*

Abstract
The aim of this project is to create a portable Braille reader. The main objective is to recognize
Braille characters from images taken by camera on a mobile phone, convert them into Latin alphabet,
and eventually display the output to the user. Solution of this task is based on a visual detection of
Braille characters. Input frames from camera are processed one by one using a special algorithm
which separates dots in characters from the rest of the image. Afterwards, dots are grouped into
particular characters. Finally, every single character is translated and rendered on screen. This
application is capable of detecting dots from books at a very high success rate. Reading from other
surfaces, e.g., metal, has a good success rate as well. Thus, the application is able to detect dots
on informational signs and other captions, which are commonly used. This reader gives people the
ability to read text written in Braille used by blind and visually impaired people all over the world.

Keywords: Braille Font Detection — Braille Reader — Mobile Device

Supplementary Material: Demonstration Video
*xkrusi00@stud.fit.vutbr.cz, Faculty of Information Technology, Brno University of Technology

1. Introduction

The main objective is to develop a device that would
be able to convert Braille into Latin alphabet. Program
that would be possible to use almost everywhere. Pro-
gram capable of reading complex books and scripts
written in Braille or simple informational signs. It is
the reason why the application has been developed
for mobile phones – people have them always at hand.
In short, this application helps people understand text
written in Braille characters used by visually impaired
or blind people. It helps to break communication bar-
rier between visually impaired and unimpaired people.

The main problem of the whole process is a detec-
tion of the dots of a Braille character. Each character
consists of one to six dots, which are embossed into
paper or other surface. Thus, the dots are little ele-
vated above the background. This provides a way for

detection of the dots, because the dots reflect light in
a different way than a background. However, certain
adjustments need to be done mainly because of the
noise in the image. The last main problem is grouping
the dots into the particular characters. This needs to
be solved by measuring spaces between dots.

This issue is very specific. Only a handful of pa-
pers dealing with conversion of text written in Braille
exists. Although Braille is used by blind people all
over the world, it is quite neglected by the rest of the
population. Existing works focus mainly on translating
whole pages of Braille, e.g., books. Usually, an image
is acquired with a scanner and the image is then pro-
cessed by a computer. Due to time consuming nature
of such task this method is not suitable for interactive
mobile application. Our application is capable of de-
tection of dots from images taken by mobile phone,
which means the images can be very often inaccurate.

http://excel.fit.vutbr.cz
https://youtu.be/EfODEhcaGVQ
mailto:xkrusi00@stud.fit.vutbr.cz


Figure 1. Examples of different texts written in
Braille. These photos are taken from books, door
signs, captions on drug covers, and informational
signs in trains.

Furthermore, to secure a smooth running of the applica-
tion, the images are taken in low resolution compared
to the images taken by scanner. Detailed description
of previous works is included below (Sec. 2).

The solution is based on thresholding algorithm,
which is quite reliable and successful in detecting dots,
yet providing a reasonable amount of frames per sec-
ond, thus securing optimal running speed of the appli-
cation. This process is essential, and requires balance
between speed of the application and accuracy of out-
put. The algorithm is based on an adaptive method of
thresholding. First, an integral image of the original
image is calculated. Then, binary image is formed
using the integral image. Finally, distances between
every single dot are measured, and according to the dis-
tance, the dots are grouped into characters. Characters
are eventually translated and rendered on screen.

This application works as a pocket Braille reader.
It is capable of reading Braille from different surfaces,
eg., paper or metal. However, sufficient illumination
of the room is required for reliable detection. The
speed of application is high enough to secure relatively
smooth running. Nevertheless, results of the appli-
cation are not completely satisfactory if the dots are
overlapped with different text or situated in a dark-
colored background.

The application was developed for Android mobile
platform, focusing on reading only one-sided docu-
ments and texts written in Braille. It is available for
download at Google Play1.

1.1 What is Braille
Braille is a unique kind of writing system. It is used
mainly by visually impaired or blind people all over
the world. It represents a way how can blind people

1https://play.google.com/store/apps/
details?id=fit.vut.braillereader

Figure 2. The top image shows the original colored
image with Braille. The bottom image shows a binary
image after being processed with the thresholding
algorithm. The black groups of pixels represent
possible dots which have been detected. Some noise is
still present.

communicate. Each Braille letter consists of one to
six dots, which are aligned into two columns and three
rows. These combinations ensure encoding up to sixty-
three letters, because empty character is reserved for
a space. The dots are embossed into paper or another
surface, e.g., metal, allowing people to read the text by
touch. Embossing dots requires a special equipment,
which means the printing can be expensive, and that
is one of the reasons why Braille is not widespread.
Some examples of text written in Braille are shown in
Figure 1.

1.2 Braille Usage
Although Braille is used all over the world, every lan-
guage has its own specific character encoding which
complicates versatility of Braille. Furthermore, some
languages use characters to encode text by syllables
or short-cuts, e.g., English. In case of Czech, every
letter in the alphabet is encoded separately. Some
other characters are encoded as well, e.g., punctuation
or mathematical symbols. This ensures that Braille
can represent almost any common text. There also
exist special prefixes used for encoding numbers and
capitals.

2. Overview
This chapter presents several selected works, which
deals with optical detection of Braille text. These
papers deal mainly with conversion of Braille text on
personal computers. Articles were chosen to show
different approaches how can Braille be recognized
from images. Only a handful of papers deals with this
issue on mobile platform.

2.1 Background
The solution published in the article “A Braille Recog-
nition System by the Mobile Phone with Embedded

https://play.google.com/store/apps/details?id=fit.vut.braillereader
https://play.google.com/store/apps/details?id=fit.vut.braillereader


Figure 3. In the top image, the grey spots represent
final dots detected by the algorithm. Noise is being
removed, and any dots touching edges of the image
are being removed as well. The bottom image shows
blue horizontal and green vertical lines for dots lying
on the same rows and columns. Only one line, i.e.,
three rows, are preserved, the rest is discarded.

Camera” [1] uses a simple thresholding algorithm, con-
verting the original image into a binary image. Sizes
of pixel groups are measured, and extremes are con-
sidered as noise in the image and thus ignored. The
method assumes that dots are perfectly aligned, and
does not consider skewed images. In addition, split-
ting columns of the dots into a character is very simple
as well. Only distance between two columns next to
each other is measured, and then decided whether the
distance is wide enough for splitting columns into two
characters or not. The article does not specify any other
possibilities, however more complex Braille texts can
be very diverse, which means it is important to com-
pare distances between previously detected columns as
well, thus it is not possible to rely on this assumption.
There are four experimental images mentioned in the
article. The average time of image processing is two
seconds. Two of the images were correctly translated,
one partially, and one not properly translated. There is
no further description of the experiments.

The paper “Optical Braille recognition with Haar
wavelet features and Support-Vector Machine” [2]
processes images with Braille on a computer from
a scanned image. The detection algorithm is advanced
and complex. It works in a specific sliding window
computing Haar wavelets of a small image part. Fur-
ther, the part of image is processed by Support-Vector
Machine method, and considered whether it contains
any dot. Using this technique, the image is converted
into a binary image containing ones in places of the
dots and zeroes in the rest of the image. Although,
the correctness of outputs is very good – over 90 %;
the process is very time consuming. The tests show
that processing one page of text can take up to tens
of minutes, which is useless for this project. Also,
the correctness of the method depends on hundreds

Figure 4. The top image shows a final line of
correctly detected dots. Distances between dots are
measured, and the dots are grouped into particular
characters. The final output of the process is shown in
the bottom image. The characters are correctly
detected, translated and rendered back on the screen.

of examples of correct and incorrect images. The ge-
ometric correction of skewness of the image is very
simple as well. It is solved by manipulation with the
original image by drawing a specific rectangle onto
paper and then detecting it, which is not very useful
for our project as well. The article does not specify
any experiments or test sets.

Method used in the article “An Efficient Braille
Cells Recognition” [3] is also based on thresholding
like other studies. However, the algorithm does not
produce a binary image, but a three valued image. It
contains black color for background, and white and
gray colors for both light and dark sides of each dot.
The boundaries (lower and upper) for thresholding
are computed on the basis of Beta distribution, which
uses histogram of the image for predictions. Group-
ing of the dots is solved by creating, firstly, a grid
for each row on a page. Secondly, by drawing a grid
for columns while separating dots on each row. The
authors claim that correctness of the process is up to
100 % using this technique. However, this algorithm
requires a precise image taken by scanner, and the
detection runs on a computer, because it is time con-
suming as well. The article shows results for several
images, however there is no detailed description of the
experiments.

The article “Braille document recognition using
Belief Propagation” [4] uses Radon transformation for
correcting skewness of image, and then uses Belief
Propagation technique to detect Braille characters in
image. Firstly, image and background are separated.
Secondly, Radon transformation is applied with dif-
ferent angle parameters. Using this method, a correct
angle is found to rotate image properly, because inten-
sity of image is at its peak at the correct angle. Finally,
the image is processed by thresholding, and distances
between dots are measured. Further, characters are rec-



ognized using Belief Propagation by checking neigh-
boring dots. Success of dots recognition using this
technique varies between 88 % up to 100 % according
to the experiments. Character recognition rate is al-
most 83 % on average. The evaluation was carried on
several test images.

The technique used in paper “A robust probabilistic
Braille recognition system” [5] deals with recognition
of dots, which is based on Expectation-maximization
algorithm. At first, spacing of the document containing
Braille text is measured. Vertical distances between
dots and edges of paper are detected. This helps to split
the text into lines of Braille. Then, horizontal spacing
between edges and columns is measured. Positions of
particular dots are modeled as data sequences drown
from Hidden Markov process. This method copes
well with noise in the image and other artifacts. The
processing of one page took up to 14 seconds on testing
computer. The success rate of character recognition is
almost 100 % according to the several test documents.

2.2 Detection algorithm
The designed algorithm for detection of dots is based
on the article “Adaptive Thresholding Using the Inte-
gral Image” [6]. The paper presents a reliable form
of an adaptive thresholding algorithm, which is us-
able even for real time image processing. The paper
extends Wellner’s algorithm [7] by using an integral
image. Computing the integral image requires an ad-
ditional pass through the image, thus the algorithm
is a little bit slower. Further, the algorithm compares
value of each pixel to values of surrounding pixels,
which brings better image separation. This technique
produced the best results in thresholding the image.

3. Detection Process
There are two main factors that has a major impact on
the solution – speed and quality. The processing speed
has to be fast enough to secure smooth running of the
application, and the quality has to be good enough
to guarantee highest possible accuracy of the output.
These factors need balancing, and it is important to
reach a compromise between them, since the hardware
of mobile phone is not as efficient as desktop computer
hardware.

3.1 Algorithm based on Thresholding using
Integral Image

First of all, the original image is converted from col-
ored space into grayscale, which discards unnecessary
information about image. We focus on reflected light
of the dots, which is better visible on a grayscale im-

age. An integral image is computed in the next step.
Following algorithm shows the computation:

Algorithm 1: INTEGRAL IMAGE

input : Input image in[w][h].
output : Integral image Int[w][h].

1 for x = 0 to w−1 do
2 for y = 0 to h−1 do
3 out = in[x][y];
4 if (x−1 ≥ 0) then
5 out = out + Int[x−1][y];
6 end
7 if (y−1 ≥ 0) then
8 out = out + Int[x][y−1];
9 end

10 if (x−1 ≥ 0 and y−1 ≥ 0) then
11 out = out − Int[x−1][y−1];
12 end
13 Int[x][y] = out;
14 end
15 end

Where w is width of the image, h is height of the
image, out is the output value, in is the original image,
and Int is the integral image.

After the calculation of the integral image is com-
plete, a specified sized window is created and moved
through the image from left to right. Each pixel in the
window is assigned a new value by summing values
of surrounding pixels and averaging them. Comparing
value of pixel to average values of surrounding pixels
in window helps to separate dot from the rest of the
image, i.e., it helps to highlight shadows of particular
dots. Following formula is used to calculate sum of
pixels in the window:

x2

∑
x=x1

y2

∑
y=y1

f (x,y) = I(x2,y2) (1)
−I(x2,y1 −1)

−I(x1 −1,y2)

+I(x1 −1,y1 −1)

The sum is calculated for every pixel of the image
f (x,y) using values of the integral image I. The x1,y1
coordinates represent top-left corner of the window,
and x2,y2 coordinates represent bottom-right corner of
the window.

Following formula is used to create a binary image:

g(x,y) =

{
black f (x,y)≤ s·(1.0−p)

c

white otherwise
(2)



0 1 2 3 4 5 6
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
T

ru
e 

po
si

tiv
e 

ra
te

False positives per image (FPPI)

 

 

Paper test set
Skewed test set
Metal test set

Figure 5. ROC curves representing hit rate for each
test set. The curves are created by plotting True
positive rate against False positives per image (FPPI).
The higher the True Positive Rate, i.e., hit rate, the
better success rate. FPPI represents an average
number of false alarms per image, i.e., the number of
occurrences incorrectly detected as dots.

Where f (x,y) is value of the current pixel, c is number
of pixels in the window, s is the total sum of surround-
ing pixels in the window, and p is tolerance of the sum
in percent. The application uses p = 0.15 tolerance.
Using this method, a binary image is created, contain-
ing black color on a possible dot position and white
color for the rest of the image. Output of this technique
is shown in Figure 2.

The binary image is iterated in the next step, and
if a black color occurs, the position is processed using
flood fill algorithm looking for its boundaries. Spots
too small or large are considered as noise in the image
and thus discarded. This technique creates a list of
dots detected in the image. The final output of the
algorithm is shown in Figure 3.

3.2 Grouping Dots into Characters
First, the algorithm looks for dots in the same row ac-
cording to their position. This process requires some
tolerance for measuring distances, because of the pos-
sible skewness of the image. Second, dots in rows
are split into columns. If any dot is not assigned with
its parent column and row, it is discarded, considered
as noise. Finally, characters are created by measur-
ing spaces between the dots and around them. Every
character is assigned with columns (left and right) and
rows (top, middle and bottom) from which it consists.
Every character is assigned a value of the dot, accord-
ing to its position as well. Eventually, the character is
converted into a letter based on its value. The letter is
rendered on the screen at the position of the character,
afterwards. The result is shown in Figure 4.

4. Experiments
Detection algorithm was tested on three different sets
of samples. These sets were named Paper, Skewed,
and Metal. Paper test set contained images of Braille
taken from books and articles only, i.e., the surface
was paper. The images were very little skewed and
were well illuminated. Skewed test set contained only
images which were skewed, blurred, taken from wide
angles or inaccurate in other ways. Metal test set
contained various images with Braille embossed into
metal surface and usually poorly illuminated. Thus,
Skewed and Metal test sets are mainly experimental.
Samples from these sets are included in Figure 6.

Table 1. Detection Rate Statistics

Test set Recall Precision

Paper test set 98.17 % 95.17 %
Skewed test set 93.94 % 86.92 %
Metal test set 91.09 % 90.04 %

4.1 Detection Rate
The first part of the evaluation was based on receiver
operating characteristic (ROC) curves [8]. The ROC
curves express capability of successful detection of
the dots. The major measured factors are hits, misses
and false alarms. These factors are measured for every
image. True positive rate, or recall, represents hit
rate of the algorithm. Positive predictive value, or
precision, represents probability that an occurrence is
truly positive. The corresponding graph is shown in
Figure 5. The exact results are listed in Table 1.

Results show that the hit rate of the detection algo-
rithm is really good. It scored over 98 % in the Paper
test set, almost 94 % in the Skewed test set and 91 %
in the Metal test set of success rate. The table shows
results for value of threshold within values 15 and 195.
These numbers express size of dots detected in the
image.

4.2 Character Error Rate
The second part of the evaluation was focused on mea-
suring number of correct characters of the output. Mea-
suring Levenshtein distance [9] was used for this pur-
pose. It is metric used for calculating difference be-
tween two words. Value of the distance represents how
many character adjustments had to be done in order to
modify one word into another.

The results of this technique are listed in Table 2.
The error rate of the first test set was only 8 %. The suc-
cess rate of the other test sets was not very successful
mainly because of the images of poor quality and their



(a) Paper test set

(b) Skewed test set

(c) Metal test set

Figure 6. Examples of the test sets. The figure shows examples of correctly and incorrectly detected dots in the
images, and examples of correctly and incorrectly detected characters from each set. There are also shown raw
images from each test set.

Table 2. Character Error Rate

Test set Error Rate

Paper test set 7.59 %
Skewed test set 46.52 %
Metal test set 59.34 %

skewness. The algorithm still needs to be improved,
so it could handle images of bad quality better.

4.3 Running speed
The application was implemented on Android plat-
form using OpenCV2 library for image processing.
The average number of frames per second (FPS) was
13.50 on testing device – Sony Xperia Z, at resolu-
tion of 320x240 pixels. However, the average running
speed of the application in the same resolution without

2OpenCV is an open source multi-platform library used for
image processing. Website address: http://opencv.org/

http://opencv.org/


any image processing using the OpenCV for camera
handling was about 15 FPS. Thus, the speed of the
designed algorithm can be considered as quite good
and well optimized. Compared to the other works, pro-
cessing of one image takes 1

13.5 of a second. However
image processing presented in other works takes up to
tens of seconds or even minutes.

5. Conclusions
The paper focuses on creation of a mobile Braille
reader. The application provides a method to read
Braille with a mobile phone, allowing people to read
and understand texts usually used by blind and visu-
ally impaired people. Since Braille is a somewhat
neglected, it helps to spread its utilization.

The application shows best results in detection of
Braille from paper. The hit rate of detection of dots
is over 98 % and character error rate is less than 8 %,
which makes the application quite reliable. The over-
all average hit rate is about 94 %. However, mainly
character recognition needs improvement when read-
ing Braille from skewed images and images of poorer
quality with insufficient illumination. The application
was tested on mobile phone with Android platform,
and is able to run at 13.50 FPS on average.

This project brings a new method of reading Braille.
It is capable of fluent reading of books or signs writ-
ten in Braille. One of the main advantages of the
application is its mobility so it can be used almost
anywhere. Another advantage is its simplicity and effi-
ciency. There is no necessary involvement of the user,
application translates the text by hovering a mobile
phone over Braille characters.

The application can be enhanced by adding sup-
port for various language sets, so it could be capable of
reading Braille written in any language. This is possi-
ble because of the fact that Braille characters are same
in every language, only represented variously. Another
improvement can be done by enhancing the detection
algorithm to work better even in low illumination. This
could be possibly done by using flashlight of the mo-
bile phone as an additional source of light. However,
using flashlight can be problematic due to handling the
camera by the OpenCV. It would require a different
implementation of the camera handling and would lead
to a possible performance loss. Another problem is
that the light is very bright at short distances and could
possibly impair input images.

Acknowledgements
I would like to express my gratitude to my supervisor,
Ing. Jakub Sochor, for his expertise, understanding,

and assistance. His guidance helped me during re-
search and writing of this project.

References
[1] Shanjun Zhang and K. Yoshino. A braille recogni-

tion system by the mobile phone with embedded
camera. In Innovative Computing, Information
and Control, 2007. ICICIC ’07. Second Interna-
tional Conference on, 2007.

[2] Jie Li, Xiaoguang Yan, and Dayong Zhang. Op-
tical braille recognition with Haar wavelet fea-
tures and support-vector machine. In Computer,
Mechatronics, Control and Electronic Engineer-
ing (CMCE), 2010 International Conference on,
volume 5, pages 64–67, 2010.

[3] A.-M.S. Al-Salman, A. El-Zaart, Y. Al-Suhaibani,
K. Al-Hokail, and A.-A.O. Al-Qabbany. An effi-
cient braille cells recognition. In Wireless Com-
munications Networking and Mobile Computing
(WiCOM), 2010 6th International Conference on,
pages 1–4, 2010.

[4] Zhenfei Tai, Samuel Cheng, Pramode Verma, and
Yan Zhai. Braille document recognition using
belief propagation. Journal of Visual Communi-
cation and Image Representation, 21(7):722–730,
2010.

[5] M Yousefi, M Famouri, Behrooz Nasihatkon,
Zohreh Azimifar, and P Fieguth. A robust proba-
bilistic braille recognition system. International
Journal on Document Analysis and Recognition
(IJDAR), 15(3):253–266, 2012.

[6] Derek Bradley and Gerhard Roth. Adaptive thresh-
olding using the integral image. Journal of graph-
ics, gpu, and game tools, 12(2):13–21, 2007.

[7] Pierre D Wellner. Adaptive thresholding for the
digitaldesk. Xerox, EPC1993-110, 1993.

[8] Tom Fawcett. Roc graphs: Notes and practical
considerations for researchers. Machine learning,
31:1–38, 2004.

[9] R William Soukoreff and I Scott MacKenzie. Mea-
suring errors in text entry tasks: an application of
the levenshtein string distance statistic. In CHI’01
extended abstracts on Human factors in computing
systems, pages 319–320. ACM, 2001.


	Introduction
	Overview
	Detection Process
	Experiments
	Conclusions
	References

