Supposed that when error is detected, part of the
input has already been processed. This part is a
prefix u of a sentence uv. Uv is a sentence In
language, so the only thing that has to be done, is to
find string {v, that Is continuation of u. The
continuation computes as follows:

Continuation is a sentence, which has to be produced
using the fewest productions steps. The trick is to find
the quickest end for each nonterminal, in other words
to find which right-hand side leads the fastest to
string composed only of terminals. It is possible to
compute it in advance, using a number called step
count.

For each nonterminal (left-hand side) the right-hand
side with lowest step count is picked.

These rules form a continuation grammar.
Continuation grammar doesn't have to form a proper
grammair, it is used only for error recovery.

1. replace nonterminal:
First nonterminal on the stack is found. Using only
continuation grammar, the nonterminal is replaced by
its right-hand side. Each terminal from the right-hand
side of the rule is added to the acceptable set. Also,
the First set of derived nonterminal is added to the
the acceptable set.
2. skip unacceptable tokens:
Zero or more tokens form the input are skipped, until
a symbol from acceptable set is found. Since ending
symbol (in this paper it is terminal end) is acceptable,
this step is not infinite.
3. resynchronize the parser:
Parser tries to continue. If it is possible to make a
move, parsing can normally continue. If parser can't
continue, modified parser has to continue as follows:
a) nonterminal on the top of the stack:
If nonterminal is on top of the stack and there
IS no grammar rule to use, algorithm repeats
from 1.
b) terminal on the top of the stack:
If there is a terminal on top of the stack and it
cannot be matched with the input symbol,
expected symbol is inserted. Since every
token has its value, implicit value is given to
each inserted symbol (e.g. 0 to int, err_id to
id). Step 3 is repeated until the parser is
resynchronized.

beglin
a==p;
end

Sequence of tokens is: T begin T id T equal
T equal T id T semicolon T end. Erroris on
the second line: extra equal. The recovery with my
modification works as follows:
Parser starts parsing the input.

stack input | rule
<PROGRAM> T begin|l
end<BODY>begin T begin|POP
end<BODY> T id 3
end<BODY>; <STATEMENT> T 1d 0

end<BODY>; <EXPRESSION>=1d |T id POP

end<BODY>; <EXPRESSION>= T equal |[POP

end<BODY>; <EXPRESSION> T equal

There Is no grammar rule that can be used. Parser
cannot continue, error recovery has to start.

Replace nonterminal: | |
First terminal, <EXPRESSION>, is found. It is replaces

by its right-hand side, using continuation grammar:
<EXPRESSION> -> <TERM><EXP>,

<TERM> -> int,

<EXP> ->¢

Acceptable set={ (, int, id}.

Skip unacceptable tokens:
In the inputis T equal that is not in acceptable set,

token is skipped. In the input is T id that is in
acceptable set. Token is not skipped.

Terminal on the top of the stack:
Terminal T int is on the top of the stack. It can be

matched with the input.

