
20
15

http://excel.fit.vutbr.cz

Real-Time Rendering of a Scene With Many
Pedestrians
Václav Pfudl

Abstract
The aim of this text was to describe implementation of software that would be able to simulate
a scene with walking characters in real-time with emphasis on rendering level of realism. The
application should be then able to record video sequences of such simulated scenes. Such video
sequences could be used as an input (test data) for people counting systems. The problem was
divided into three major subproblems: character animation, artificial intelligence for character
movement and advanced rendering techniques. The character animation problem is solved by
creating a model of the character and using skeletal animation. To achieve characters moving
in a scene autonomously path finding (A* algorithm) and group behaviors (steering behaviors)
were implemented. Realism in a scene is added by implemented rendering methods such as
normal-mapping, shadow-mapping, deffered rendering, skydome, lens flare effect and screen
space ambient occlusion. Rendering stage of a scene can be easily parametrized through imple-
mented GUI. Implemented application provides user with easy way of setting a scene with walking
pedestrians, setting its visualization and to record the result.

Keywords: real-time rendering, normal-mapping, shadow-mapping, lens-flare, screen space ambi-
ent occlusion, skydome, skeletal animation, movement artificial intelligence, group behaviors

Supplementary Material: Demonstration Video
*xpfudl01@stud.fit.vutbr.cz, Faculty of Information Technology, Brno University of Technology

1. Introduction

The motivation behind this paper was to develop an ap-
plication that would be able to record video sequences
of scenes with walking chracters in high level of re-
alism so the video sequences could be used as an
input (test data) for people counting systems. The
developed application itself could serve as a tool for
other purposes like making preanimated scenes for
games and movies. The desired output of such applica-
tion should be a program with graphical user interface
which would allow users to parametrize visualization
of a scene (scene made of imported models) as well as

customize characters movement according to required
simulation. The output should be recorded with higher
frame rates, althought overall quality of visualization
is preferred over frame rates.

The development of such application was divided
into three major groups: character animations, artificial
intelligence for movement of characters and advanced
real-time rendering techniques.

When rendering a scene with walking pedestrians,
first that scene needs to be populated with animated
character models. Blender 1 was used to create such

1for more info visit http://www.blender.org/

http://excel.fit.vutbr.cz
https://youtu.be/2bQV2ftENdc
mailto:xpfudl01@stud.fit.vutbr.cz
http://www.blender.org/


models (not only character models but also static scene
models) along with their animations (skeletal anima-
tion, section 2.1). Then we need a tool to import ge-
ometry, animations and material data of these models
into our application. When choosing which tool to
use we need to consider which file formats this tool
can work with along with what that certain file format
can describe (animations, textures, materials, lights
etc). A convenient tool for our purposes is ASSIMP
(Open Asset Import Library) along with COLLADA
file format.

Each character needs to act autonomously, how
to get to their desired location and react dynamically
to the surrounding environment (avoid static and dy-
namic obstacles). Most of path finding algorithms are
based on Dijkstra’s algorithm [1]. For most cases A*
algorithm [2] is the one most effective and our case
is not different. Our agent (character) needs to per-
cieve its environment to avoid other characters or to
group up with other characters etc. In modern game
engines or in applications simulating group behavior,
algorithms are based on algorithmic steering behav-
iors for animated characters, which were developed by
Craig Reynolds in late 1980s [3, p. 261-300].

Considering visualization of whole scene, at the
moment there are two main 3D rendering API includ-
ing DirectX and OpenGL. For the sake of our appli-
cation we use OpenGL mainly becasue it is multiplat-
form API. To visualize scene in more realistic man-
ner we need to program how rendering pipeline will
process vertices and fragments of our models we ex-
port from Blender and import to our application. For
these purposes GLSL (OpenGL shading language) is
available, which is the language that allow us to pro-
gram various stages of rendering pipeline including
vertex shaders, tesselation shader, geometry shaders,
fragment shaders etc. This allows to produce some
advanced shader effects and even postprocess rendered
output (bloom effect, antialiasing, lens flare etc.).

Our application successfully encapsulates above
described functionality into graphical user interface
that provides users to set various scenarios with walk-
ing pedestrians, enables to set group behaviors of these
pedestrians along with how the whole scene will be
visualized (which shader effects scene uses, lighting
of the scene etc.). Application also allows to record
these animated scenes.

2. Moving characters around

Our implemented application includes the following
methods and techniques ensuring autonomous move-
ment of character in dynamic environment.

2.1 Skeletal animation
To animate model of a character skeleton of this model
(this skeleton is commonly called rig) was created in
Blender. Each bone of this skeleton is then assigned
with vertices this bone should have control over (these
vertices are weighted, figure 1). Then set of frames is
created and each frame carries information of a pose of
the model in the way it makes consecutive movement
(walking, running etc.) after interpolating between
frames. This information of bones, influenced vertices
and animations is then imported into application us-
ing ASSIMP library and model is animated in vertex
shader program. In each rendered frame we calculate
current pose of each bone (transformation matrix) of
character’s skeleton and then we multiply this matrix
with vertices according to which bone they belong to.

Figure 1. This figure demonstrates weighted skeleton
created in Blender, particulary how vertices around
chest are influenced by ”chest” bone.

2.2 Artificial intelligence for character move-
ment

As the pathfinding algorithm we chose A* algorithm
for its efficiency and flexible use in wide range of con-
texts. Map representation we chose is demonstrated in
figure 2. Navigation mesh [4] allows characters move
much smoother without ”zig-zag” movement (in con-
text of a triangular area character can move in straight
line) and it also solves static obstacle avoidance. To
make sure characters act autonomously steering be-
haviors [3]. Steering behaviors allow characters to
percieve their surrounding environment (position vec-
tors, acceleration vectors, etc. are available) and act
to avoid obstacles or collisions with other characters
by applying vector forces to their current acceleration.
Characters in our application are divided into groups



and each group can be parametrized to set behaviors
of characters in that particular group. Behaviors are
vector forces applied and calculated for every single
character.

Figure 2. Automatically generated navigation mesh
[4] in Blender. In triangular areas characters can move
in straight lines (no need to calculate path), edges
serve as portals into other triangular areas and vertices
are nodes which we search paths in (in case we can’t
move in straight line to our target).

3. Realistic scene rendering
In order to visualize scene with higher level of realism
and to render scene in real-time (more than 25 frames
per second) we implemented following techniques.

3.1 Normal-mapping
Rendering scene with Phong lighting model interpo-
lates light nicely and conveys a sense of desired real-
ism, however it can not simulate bumpy surfaces with-
out use of high amount of extra vertices (inappropriate
for real-time). Therefore we used normal-mapping
[5] technique applied to low-poly (model composed
of low amount of polygons) models. Using this tech-
nique is suitable for real-time applications because at
run time it costs one texture lookup more than simple
Phong model and offers big amount of detail contribut-
ing to realistic look of models. Figure 3 shows the
impact of normal-mapping used on low-poly model of
a character.

3.2 Shadow-mapping
To aproximate realism we need objects to cast shadows.
To achieve this effect we use shadow-mapping [6].
This technique itself requires two pass rendering which
means we have to render our scene twice. This would
imply that we get frame rate dropped by half, however
during first pass we only need to right down a depth
information of vertices and there is no need to deal
with lighting calculations. This makes this technique
viable for real-time shadow casting. This technique

Figure 3. The part of low poly character model lit by
Phong lighting model on the left and then the same
model lit by Phong model with use of
normal-mapping, which is rendered with more details
(shows bumpy surfaces around character’s eyes, nose
etc.).

by itself does not produce realistic shadows (example
in the picture 4), it only produces hard shadows and
suffers from artifacts (more in section 4).

Figure 4. The group of characters casting shadows
produced by basic implementation of
shadow-mapping.

3.3 Deferred rendering
This technique [7] provides significantly better per-
formance when rendering a scene with many lights
than forward rendering and we can make use of it even
when rendering outdoor scene affected only by one
directional light. That is mainly because of the fact
that during the process of this technique we create and
fill so called G-buffer with geometry data (figure 5),
which lighting or other (for example postprocessing)
effects can profit from.

3.4 Screen space ambient occlusion
Screen space ambient occlusion (SSAO) [8] is approx-
imation of how each vertex of scene is exposed to
ambient lighting. This technique is suitable for real-
time rendering because it is implemented without CPU
overhead inside of fragment shader program and there-
fore it is completely executed on the GPU side. Our
implementation samples each pixel with 4x4 texture



Figure 5. The content of G-buffer (information saved
in set of textures) used in our application: top left:
vertex positions, top right: normals, bottom left:
specular color with shininess in alpha channel,
bottom right: diffuse color.

reads (texture holding position of sampled pixels) and
then calculates occlusion factor based on position of
these surrounding pixels. This technique offers more
realistic depth look of models (figure 6) at a cost of six
percent frame rate drop2 which is negligible for our
purposes.

Figure 6. A model of a house rendered without SSAO
(top) and the same house rendered with SSAO
(bottom), where we can see added depth mainly
around windows and door.

3.5 Skybox
Skybox [9] creates illusion of distant 3D surroundings
of scene, makes scene look bigger than it is. Render-

24 × 4 sampling kernel, resolution 1920 × 1080, NVidiA
GeForce 840M

ing distant buildings, mountains, etc. using geometry
would be inefficient. Instead we can project these sur-
roundings in a texture mapped on simple cube or other
geometry like sphere/hemisphere (skydome). Figure
7 shows the power of skydome. In our application
we use skydome instead of skybox, it requires more
geometry to render but on the other hand it provides
more flexible way of creating textures for skydomes
(a panoramic picture can be transformed using polar
coordinates into texture for skydome).

Figure 7. The scene rendered without skydome (top)
and the same scene rendered with skydome (bottom),
which makes the scene look bigger and more realistic
with cost of rendering only extra 128 vertices.

3.6 Lens flare
Implementing lens flare [10] into our engine adds more
dynamic range look of the scene. We simulated light
scattering in lens system by postprocessing final image
of rendering pipeline by sampling the brightest pixels
in the centre of current frame along the vector from
that pixel to the center of screen. This is multipass
process in which we first generate lens features, after
that we multiply the result with radial blur kernel and
finally we blur the result.

4. Conclusions
This article presents methods and techniques used in
developped application for character animations, au-
tonomous behaviors of these characters and rendering
technique to make scene look more realistic including
advanced lighting effects and postprocessing effects



Figure 8. This figure shows the final application, rendered scene with all implemented effects and implemented
GUI.

Figure 9. The result of postprocessing lens flare
implementation.

(figure 9 shows implemented application at run time).
We accomplished our goal to provide users with GUI
for customizing visual appearance of rendered scene,
customizing group behaviors and paths of walking
pedestrians and posibility to record animated scene.
Implemented GUI allows to import models (ASSIMP
library supported file formats) to create custom scenes
as well as import character models with their anima-
tions. Characters can be assigned to different groups
and for each group properties like start, goal of the
path, behaviors of characters in that group (charac-
ters keeping distance between each other, avoid colli-
sions, etc.) can be customized. GUI also provides an
easy way of customizing textures and visualization of
meshes which create imported models. Another part
of implemented GUI is customization of methods like
lens flare effect, screen space abient occlusion, etc.

In conclusion implemented application is able to
generate video sequences of easily customized scenes
with walking pedestrians. It is able to render simulated
character movement in real-time (up to 40 characters in
more than 25 frames per second), thanks to generating
videos frame by frame even really low frames per
seconds in bigger scenes is not an issue.

In the future work I would like to implement more
shader effects (bloom effect, antialiasing, etc.) along
with optimalizations including space partitioning, level
of detail, etc.

References
[1] Jing chao Chen. Dijkstra’s shortest path algo-

rithm, 2003.

[2] Bryan Stout. Game Programming Gems, chapter
The Basics of A* for Path Planning. Charles
River Media, Inc., 2000.

[3] Daniel Shiffman. The Nature of Code. 2012.
ISBN: 0985930802.

[4] Steven White. Game Programming Gems 3,
chapter A Fast Approach to Navigation Meshes.
Charles River Media, Inc., 2002.

[5] Yanni Hajioannou. Gamedev glossary: What is a
“normal map”? Game Development, 2013.

[6] Anirudh.S Shastry. Soft-edged shadows. Graph-
ics Programming and Theory, 2005.



[7] Brent Owens. Forward rendering vs. deferred
rendering. Game Development, 2013.

[8] John Chapman. Ssao tutorial. john-chapman-
graphics, 2013.

[9] Etay Meiri. Tutorial 25: Skybox. OGLdev -
Modern OpenGL Tutorials, 2011.

[10] John Chapman. Pseudo lens flare. john-chapman-
graphics, 2013.


	Introduction
	Moving characters around
	Realistic scene rendering
	Conclusions
	References

