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Human gesture recognition using top view depth
data obtained from Kinect sensor
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DETECTED GESTURE:
HANDS UP

Abstract

In this paper we present a system suitable for real-time human tracking and predefined human
gestures detection using depth data acquired from Kinect sensor installed right above the detection
region. The tracking part is based on fitting an articulated human body model to obtained data
using particle filter framework and specifically defined constraints which originate in physiological
properties of the human body. The gesture recognition part utilizes the timed automaton conforming
to the human body poses and regarding tolerances of the joints positions and time constraints.
The system was tested against the manually annotated 61-minutes-long recording of the depth
data where ten different people were tracked. The 92.38% sensitivity was reached as well as
the real-time performance exceeding 30 FPS. No a priori knowledge about the tracked person
is required which makes the system suitable for seamless human-computer interaction solutions,
security applications or entertainment industry where the position of sensors must not interfere with
the detection region.
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For many years the human tracking and gesture recog-
nition have been the subjects of an extensive research.
With the advent of depth sensors capable of 3D scene
reconstruction the solutions proposing configuration of
an articulated human model configuration estimation
started to emerge.

Most recent solutions rely on the side view mounted
sensors, i.e. a standing person must directly face the
sensor. However, some applications might require

the sensor to be placed outside the scene which the
user moves within. The security surveillance appli-
cations where the sensor unobtrusiveness and wide
view ranges are required, and the human-computer
interaction applications might be mentioned as the ex-
amples. This paper thus introduces a novel solution
which enables the high precision and reliability in hu-
man tracking and human gesture recognition using top
view depth data.
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The design of human tracking using depth sensor has
been addressed several times in the past. Among all
the most prominent is the Microsoft Kinect for Xbox
360 hardware and software solution' based on learn-
ing a randomized decision forest on over a million
training examples and mapping depth images to body
parts[1]. This approach however requires the side view
sensor placement (see Figure 1) thus making the sensor
interfere with the detection region.

To process the top-view data Yahiaoui[2] uses a
stereo pair of RGB cameras that detect a human and
perform the tracking of the head part with Kalman fil-
ter based prediction of position. Migniot [3] proposes
a system combining 2D model used for human local-
ization and a 3D articulated human model based on
particle filter to estimate a pose from top-view depth
data. Gasparrini [4] presents a fall detection system
based on a priori known background model, depth
blob clustering and human recognition from the blobs
using complex anthropometric features and relation-
ships. A precise human pose is not estimated since
it suffices to detect that a central point of the tracked
blob reaches a given height threshold implying a pos-
sible fall. Rauter [5] then introduces Simplified Local
Ternary Patterns, a new feature descriptor which is
used for human tracking based on the head-shoulder
part of the human body.

The solution proposed in this paper is based on
the bootstrap particle filter recursively evaluating the
model-data correspondence with regards to the com-
mon physiological properties of the human body which
is represented as the articulated human model. Under
specific conditions the penalization is applied to certain
estimated poses in order to overcome common track-
ing imprecisions. The core of the predefined gestures
recognition subsystem is based on the timed automaton
with conditional transitions.

The tracked person is modeled with an articulated hu-
man model based on the kinematic chain which con-
sists of twelve joints and ten links (see Figure 2) rep-
resenting the upper part of the human body. In order
to reach the closest approximation to a real human
skeleton, each joint is assigned a specific operation
range (minimum and maximum rotation represented
by Euler angles) and number of degrees of freedom
with regards to human body physiology.

Hntroduction of Microsoft Kinect for Xbox 360 -
https://msdn.microsoft.com/en-us/library/
hh855355.aspx
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Figure 1 Comparison of depth data obtained when
using side view (upper two figures)[6] and top view
installed (bottom two figures) Kinect. It is evident that
the top view data are substantially less descriptive as
far as the human pose is concerned.
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Figure 2 The Figure depicts the articulated human
model designed as the kinematic chain (grey circles
and arrows) and the body parts envelopes. A torso, an
arm and a forearm are modeled as a cylinder, a head is
modeled as a sphere.

Considering the evaluation function used by the
particle filter (see Section 4) it is convenient to trans-
form the obtained depth data from a coordinate system
of the sensor to a coordinate system of each joint. For
this purpose the kinematic chain is designed as the
composition of transformation matrices where a single
joint can be located by applying the Euclidean trans-
formation on the position of the joint it is dependent
on. For instance, the transformation matrix Mg of a
left elbow joint can be derived as:

Mig =MisTLER; Ry o Ry, ., M

where M; s denotes the transformation matrix for
left shoulder joint, Ry, denotes the rotation


https://msdn.microsoft.com/en-us/library/hh855355.aspx
https://msdn.microsoft.com/en-us/library/hh855355.aspx

matrix (how the joint itself is rotated about each axis),
and T¢ denotes the translation matrix (how the joint
is translated from the position of its parent joint — the
arm joint in this case).

Since in a top view the upper limbs are the most
descriptive body parts for estimating human’s pose,
similarly to [3] a wrist, an elbow and a shoulder corre-
spond to separate joints in the articulated model while
the whole spine is simply modeled as a single link
between two joints, a pelvis and a thorax.

A single joint’s rotation controls no more then one
link. Thus, even though both the thorax and arm
joints are dependent on pelvis and always share the
same position, they are not linked to each other.

As the acquired depth data correspond to a human
body surface, main body parts are modeled as different
non-polyhedra. Considering the trade-off between the
computational efficiency and the precision, a sphere
was chosen to approximate a shape of a head and a
cylinder was chosen to approximate a torso, an arm,
and an forearm.

With regards to the Kinect sensor operating range [7]
[8] the device must be installed in the height range cca
3.8 to 5.5 meters above the ground, and the Kinect’s
optical axis angle of incidence should reach up to 18°
for better tracking precision (see Figure 3). The view-
ing angles of the sensor delimit the detection region
within which a tracked human is allowed to move so
that the whole body could still be seen by the sensor.

First, a person must perform the initial pose which
serves the purpose of obtaining the information about a
human which the system has no prior knowledge about.
This specific pose — upright posture with arms spread
out — was chosen since it is relatively easy to detect (see
Section 4.1) and since it forces a person not to raise the
upper limbs above the head which would prevent the
human height from being estimated correctly. Once the
initial pose is detected the more demanding tracking
algorithm based on a particle filter can be started (see
Section 4.2). The system architecture as the conceptual
schema can be found in Figure 4.

4.1 Preprocessing - human detection

In the first step a background subtraction is performed
by culling the depth points with Z-coordinate exceed-
ing a user-specified threshold (the ground in the detec-
tion region is expected to be flat). In order to increase
the computational speed the point cloud is voxelized
and clustering is applied. Only the cluster containing
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Figure 3 The figure depicts the required installation
of the depth sensor Kinect and correspondingly delim-
ited detection region (green circle). A person must
perform an initial pose (arms spread out) in order for
the tracker to start. A person’s view direction is ori-
ented along X axis.
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Figure 4 The conceptual schema of the gesture
recognition system architecture.

the point closest to the global coordinate system origin
(in XY plane) is kept while the other people and/or
objects are filtered out.

In order to use the articulated human model the
lengths of modeled links must first be estimated. The
human body height is extracted from the depth point
of the highest Z-coordinate. The lengths of all other



body parts are proportional to the height[9] and thus
can be easily derived. If a human is performing the
initial pose (arms spread out) it must be possible to fit
a horizontal line to the depth points positioned in the
expected height range corresponding to the chest line.
RANSAC is used for this purpose.

Two most distant points among the set of inliers
must comply to the expected arm span and the head
centroid (i.e. the centroid of the depth points posi-
tioned in the expected height range of the head) pro-
jected to the line must be positioned approximately in
the middle of that line. These measures prevent the
tracker from being started in a situation when two or
more people are present in the detection region close
to each other.

4.2 Human tracking

In order to estimate the current state of the articulated
human model (i.e. the configuration of all joints) with
regards to the obtained depth data a bootstrap particle
filter (BPF) is used [10]. At time ¢ a state is repre-
sented by a particle {;f, w!} consisting of a vector of
parameters ;f and assigned scalar weight wi.

Vector xi consists of sixteen parameters reflecting
rotations and translations of the joints with regards to
the given degrees of freedom (see table 1).

Table 1 The table summarizes which axes for rota-
tion (R) and translation (T) are considered for the given
joint.

joint R [axes] T [axes]
pelvis XY7Z X YZ
thorax X, Y -
shoulder (left/right) X,Y,Z -
elbow (left/right ) X -

Currently the wr i st joints are not used since none
of the pre-defined gestures reflects the hands positions
and the head joint is not used since the head body part
is modeled as a sphere which is invariant to rotations.

In each iteration the BPF aims to maximize the
posterior probability p(x;|y;) (where y, denotes the
observation) and consists of resampling, propagation,
evaluation, and best estimation step.

Resampling In this step the particles with high weights
are duplicated while the particles with low weights are
deleted. This enables for a fine-grained sampling of
the parameter space in the subspace where it is most
likely to find the closest approximation.

Propagation This step updates the values of parti-

cles’ parameters. New parameters vector x!, | is sub-

+

ject to p(x31|X;) which is modeled as a normal distri-
bution for each (scalar) parameter. The limits which
are set for parameters’ values (maximum positive and
negative joint rotation) comply with the common phys-
iological properties of a human body[11], while stan-
dard deviations were estimated empirically.

Evaluation The step assigns a new weight wa to
each particle {xf,wlj }. The weight is given by the

—

objective function fo(¥,d)

. 1
X,d) = ~
fol%:d) Zf)zln;indist(di,bp)

P

« penalty(X), (2)

where d denotes a vector of all D observed depth
points, the function dist(d;,bp) computes the short-
est Euclidean distance between depth point d; and a
given non-polyhedra representing a body part bp and
the function penalty(X) evaluates the penalty (see Sec-
tion 4.3) for the given parameters vector X.

Since each body part can be represented by com-
plex non-polyhedra arbitrarily translated and rotated
in a global coordinate system, it is convenient to trans-
form the depth points to the local coordinate system
of body parts, so that the non-polyhedra would get
aligned with the axes and the computation of dist func-
tion would thus get less expensive. The transformed
depth point is given as d = M1;171 «d where M;pl is the
inverse transformation matrix pertaining to body part
bp as explained in Section 3.

Best estimation Maximum a posteriori (MAP) ap-
proach is used and thus a single particle with the high-
est weight is chosen to represent the best approxima-
tion.

As the pelvis joint represents the beginning of
the kinematic chain a slight change in its global posi-
tion can result in an significant change in the global
position of the dependent joints along the kinematic
chain (e.g. shoulder or elbow). Therefore the
BPF works in two modes defined as follows:

Rough mode This mode is used to find the position
of the tracked person within the detection region (i.e.
X, Y and Z translation for the pelvis joint) and to
roughly estimate a human pose. All of the sixteen
parameters (as given in Table 1) are allowed to change
their values.

Fine mode In this mode it is expected that a posi-
tion and a coarse human pose was already found (by
the rough mode) so the more precise estimation of



Figure 5 The figures depict the process of transform-
ing the obtained raw point cloud (upper left figure) into
down-sampled and clustered data (upper right figure),
assigning the points to separate body parts (bottom
left figure), and finally estimating the best matching
articulated human model (bottom right figure).

the upper limbs configuration can be done. Only the
parameters pertaining to shoulder and elbow are
allowed to change their values.

All the steps necessary for processing each data
frame including preprocessing and the estimation of
the human model configuration are shown in Figure 5.

4.3 Penalty function

To reinforce the correct human pose estimation the
penalty function (denoted as penalty : X — p, p €
R, p €]0,1]) is used to reduce the weight of the parti-
cles representing human poses unlikely to occur at the
given time. An empirically estimated penalty value is
assigned to each wrong pose. Two of such examples
are given below:

Jumping Even though an ordinary human starts a
jump by first swinging both arms down, the system
tends to keep the articulated model at the stable po-
sition and only fits the upper limbs to the higher po-
sitions as if the user raised both arms. This event is
recognized as a too rapid change of the upper limbs
positions resulting in raised arms.

Squatting A natural squat consists of simultaneous
leaning forward and moving the hips backwards. As
the system tends to only model leaning forward, this
pose is penalized or the tracking is temporarily stopped
if the user happens to get under a reasonable height
level.

A single gesture can be thought of as an ordered se-
quence of human poses defined by the orientations of
the body parts, i.e. each joint is assigned the appro-
priate Euler angles. An essential part of the gesture

(X>12)?  (X>12)?  (X>12)?
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Figure 6 This figure depicts the timed automaton
corresponding to the gesture £1y. The transitions are
denoted by the pose icon and time constraint (given in
seconds). A horizontal line above an icon represents a
complement of that pose (i.e. an arbitrary pose except
the one displayed).

recognition subsystem is thus a timed automaton with
conditional transitions where each state represents a
human pose with given tolerance (reflecting the fact
that each person might perform a gesture in a slightly
different way) and time constraints. The timed au-
tomaton can only make a transition if both the time
conditions of the current state and the orientation con-
ditions of the body parts in the next state are met. For
each gesture a separate timed automaton is specified
(refer to Figure 6 which exemplifies the gesture £1vy).

Even though the Euler angles are convenient for
intuitive definition of the human poses, they suffer
from a significant drawback — the visual similarity
of two poses does not necessarily correspond to their
numerical similarity. This issue corresponds to the
gimbal lock phenomenon[12] and effectively causes
the fact that a single pose can be expressed by multi-
ple combination of Euler angles values. To overcome
this issue the positions of the upper limb joints are
transformed to a spherical coordinate system. Since
the problem still prevails for the poses where the incli-
nation of the elbow and wrist joint is close to its
minimum/maximum value (an arm straight up/straight
down), the azimuth is forcibly set to 0° once the incli-
nation reaches the given threshold.

The system was originally developed as an en-
tertainment solution enabling a human to control the
dynamic movement of the glass kinetic installation
(see Section 7). For this purpose three static and three
dynamic gestures were proposed by the designer (see
Figure 7). A static gesture consists of a single pose
which does not change over time while a dynamic
gesture corresponds to a time constrained sequence
of poses. Currently supported gestures are defined as
follows:

Hands up A static gesture. Both upper limbs must be
held upwards creating imaginary letter ”V” for
at least one second.

Hands down A static gesture. Both upper limbs must
be held downwards creating imaginary upside
down letter V" for at least one second.



Figure 7 All six predefined gestures can be seen in
the figure. From left to right and top to bottom : Hands
up, Hands down, Selfie, Fly, Jump, Jedi.

Hands selfie A static gesture representing the act of
taking a photograph of oneself. It can be per-
formed by either of the upper limbs or by both
of them simultaneously. Minimum duration is
one second.

Fly A dynamic gesture. It mimics birds’ act of waving
their wings. The minimum and maximum dura-
tions are three and twelve seconds respectively.

Jump A dynamic gesture. An ordinary human jump
where a head must reach at least 105% of a
tracked human height.

Jedi A dynamic gesture. It mimics the act of swinging
a (light) sword by either of both hands. An
elbow should be close to a hip while a wrist
follows one quadrant of a horizontal circle with
the radius given by the forearm length.

The proposed gesture recognition system was evalu-
ated using five sequences of depth video data summing
up to a 61.3 minutes runtime. The data was captured
for ten different testing subjects (see Table 2) who,
upon performing the initial pose, were instructed to

repeat arbitrary body movements and perform occa-
sionally some of the pre-defined gestures in a random
way. The subjects were allowed to freely move within
the detection region.

Table 2 For each test subject sex, body height, body
shape and familiarity with the system is specified.
High familiarity means the subjects had been already
tested several times before, and it correlates with more
precise performance of the gestures. Low familiarity
means it was the first time for the subject to encounter
the system, which often causes indistinct movements
occurrence.

sex height [cm] shape familiarity

Jan M 188 slim high
David M 178 slim high
Katerina F 155 round low
Pavla F 176 slim low
Ales M 181 slim  medium
Vojtech M 189 slim high
Vasek M 174 sim  medium
Petr M 175 round low
Jana F 162 round low
Jiri M 173 slim high

For each recorded sequence the ground truth was
specified with the manual annotation of the data. The
particle filter was set to use the 640 particles, the sys-
tem was tested against each of the sequence and the
overall sensitivity given as

Y true positive

3
Y ground truth’ )

sensitivity =

and precision given as

Y true positive

prectsion = Y true positive 4 false positive @)
were evaluated.

Table 3 manifests that the system is sensitive to
how precisely the gesture is performed, which allows
reaching both higher sensitivity and precision for test-
ing subjects Jan, David, Vojtech and Jiri. High false
positive rate evaluated for testing subjects Katerina
and Petr occurred mainly due to the multiple indistinct
upper limbs movements which the system incorrectly
identified as either jedi or selfie gesture.

The per-gesture performance can be found in Fig-
ure 8. As for the sensitivity it is evident the system
is more robust for dynamic gestures (£ 1y, jump and
jedi) which in general consist of the poses defined
with higher tolerances. Low precision evaluated for
gesture jedi is caused by the fact that a casual move-
ment of upper limbs naturally performed by a human
often overlaps with this gesture definition.



Table 3 The results of the system evaluation. For
each depth video sequence the total length (T) is spec-
ified as well as the ground truth (GT), true positive
count (TP), false positive count (FP), sensitivity and
precision.

testcase T [s] GT TP FP Sensitivity Precision

Jan-1 137 16 16 0 100.00% 100.00%
Jan-2 181 20 19 0 95.00% 100.00%
David 9 16 15 1 93.75%  93.75%
Kater 634 43 39 14 90.70%  73.58%
Pavla 240 32 25 0 78.13% 100.00%
Ales 315 28 25 2 89.29% 92.59%
Vojt 421 31 31 0 100.00% 100.00%
Vasek 289 25 22 1 88.00%  95.65%
Petr 545 38 36 6 94.74% 85.71%
Jana 3908 30 28 1 93.33% 96.55%
Jiri 420 36 35 0 97.22% 100.00%
SUM 3679 315 291 25 92.38%  92.09%
100.00 %

95.00 %

90.00 % | sensitivity
85.00 % precision
80.00 %

75.00 %

70.00 %

hands hands selfie fly jump jedi

up down

Figure 8 The evaluation of the gesture recognition
system in a per-gesture manner.

The Figure 9 clearly shows that the system perfor-
mance measured as the number of processed frames
per second decreases and the quality of human track-
ing given as the average weight of the best estimations
(see Section 4.2) over all test data frames increases as
the amount of particles used by the particle filter is
raised. The absolute value of the weight has no objec-
tive meaning, it is only used for relative comparison of
the human tracking quality.

Once the number of particles reached the value of
cca 600, no significant improvement was measured in
the ability of the tracker to correctly estimate the model
configuration for the given frame. On the other hand,
if too few particles are used (approx. less then 400),
the tracker loses the capability of following certain
faster human body movements (as observed visually).

The frames per second (FPS) measure was ob-
tained on optimized C++ implementation based on
ROS framework” where most demanding part of the
system — the evaluation step of the particle filter — was

ZRobot Operating System - http://www.ros.org/

about-ros/
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Figure 9 The figure depicts the decreasing system
performance (FPS) and increasing quality of human
tracking (weight) as the number of particles used by
the particle filter grows.

accelerated on GPU using CUDA framework. The
hardware parameters of the PC under test were as fol-
lows: CPU Intel Core i5 4590 @ 3.3 Ghz x 4, GPU
Nvidia GeForce GTX 760, 4GB RAM.

In this paper a novel system capable of tracking a
human and recognizing predefined gestures from top
view depth data was introduced. The obtained data are
fitted to the articulated human model representing the
simplified skeleton of upper body part consisting of
twelve joints and six rigid body parts.

Since the system requires no prior knowledge about
a tracked human, the first step consists of detecting
a human and estimating the essential human body
attributes. Human tracking is based on a bootstrap
particle filter and the quality of model-data fitting is
reinforced by penalizing the unlikely poses given a
current state. The core of gesture recognition subsys-
tem is based on a timed automaton with conditional
transitions.

The system was tested against more than one hour
long depth video sequence and ten testing subjects
with different body shapes. High sensitivity as well as
the high precision was achieved reaching 92.38% and
92.09% respectively, and due to the GPU acceleration
using CUDA framework the system runs in real time.

These results make the system perfectly capable
of being deployed in the real world applications. This
system was accepted for one of such applications —
the entertainment solution enabling a user to control
a glass kinetic installation which was exhibited at Eu-
roluce 2015° in Milan, Italy, by Lasvit*, a manufac-
turer of luxury glass installations and lightings based
in the Czech Republic.

3Buroluce 2015  exhibition website - http://
salonemilano.it/en-us/VISITORS/Euroluce
4Lasvit company website - http: //lasvit .com/
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