
20
15

http://excel.fit.vutbr.cz

Detection of Fire in Images and Video
Bc. Tomáš Polednı́k*

0%

2%

0%53%

25%

NEGATIVE1(0%)

NEUTRAL1(25%)

POSITIVE1(53%)

NEGATIVE1(0%)

NEGATIVE1(2%)

SAMPLING RULES

SAMPLE1DEPTH:

NEGATIVE1SAMPLE:

POSITIVE1SAMPLE:

NEUTRAL1SAMPLE:

20%1FIRE1PIXELS≤

50%1FIRE1PIXELS≥

20%1FIRE1PIXELS1>
< 50%1FIRE1PIXELS

41FRAMES

NEG/POS1RATIO:
1/3

IMAGE/LABEL
DATABASE

4 SAMPLE1WxH:
50x501PIXELS

5G

81G

55G

41G

24G

p FIRE
DETECTED

loss SOFTMAX_LOSSVlabel

data ip INNER_PRODUCTV

IMAGE/LABEL
DATABASE

ip

DEEPiCONVOLUTIONAL
NEURALiNETWORK

LAYERS

6

5

Abstract
This paper deals with fire detection in image and video by machine learning, specifically deep
convolutional neural networks, using Caffe framework. The aim is to create a vast set of testing
data that could be used as the base element of machine learning detection and create a detector
usable in real-time application. For the purposes of the project a set of tools for fire sequences
creation, their segmentation and automatic labeling is proposed and created together with a large
test set of short sequences with artificial modelled fire.

Keywords: Fire detection, Image processing, Video sequence, Machine Learning by deep convo-
lutional neural networks, Computer vision, Caffe, Fire modelling, Fire scene compositing

Supplementary Material: Demonstration Video — Downloadable Code And Examples
*xpoled06@stud.fit.vutbr.cz, Faculty of Information Technology, Brno University of Technology

1. Introduction

This project serves as an alternative method to ordi-
nary fire detection using short-range smoke and heat
sensors. No special hardware is required here, just a
camera and a computer analysing the camera’s output.
In case of perfect results, such system could be used in
everyday life. The main goal is to try a modern way of
detection in image and video based on machine learn-
ing with deep convolutional neural networks (DCNNs).
As DCNNs are new in this field and are considered
extremely powerful (for instance thanks to the results
from the work of Krizhevsky et al. [1]), it would be
interesting to see how much the results differ from the

fire detections of other authors. Fire is not an easy
thing to record, so finding a way to create such records
artifically is another motivation. It is therefore a chal-
lenge — creating a real fire detector that never saw a
real fire.

The problem can be divided into two core tasks.
The first one involves creating a large dataset of fire
and non-fire samples and using these to train a model
of deep convolutional neural network. The second
task is to make a software detector that analyses image
(video) input, tests its content on the pretrained model
and returns a result. The bonus is represented by the
multipurpose usability of fire-creating and sampling
tools as they can be used in some other similar project

http://excel.fit.vutbr.cz
https://youtu.be/BfPNO80Z5wk
http://www.stud.fit.vutbr.cz/~xpoled06/firedetector/
mailto:xpoled06@stud.fit.vutbr.cz


and are not limited to this one. The proper solution
would be a detection that finds fire in a video, if present,
as soon as possible — within 1 to 10 seconds. Image
analysis, which is implemented in this work, does not
include temporal information and represents a part of
video detection — my personal goal is for the number
of true positives in images to exceed 95%. The evalua-
tion is always done per image where, in case of fire, at
least one fire area must be marked with a probability
higher than 50%.

There are many methods for fire detection in image
and video, each with its own advantages and disad-
vantages. This paragraph contains the summary of
different approaches to the detection. Every method’s
detection is based on one or more visible qualities of
fire. These include its colour, shape, motion, frequency,
spatial change and smoke generation. Colour is the
most dominant quality used for detection. Chen et al.
[2] detect colour properties of fire described in Quni-
tiere’s book [3]. The main property is fire’s transition
from red, through yellow and up to white colour. As
RGB’s components do not carry the necessary infor-
mation about the colour’s intesity, Çelik and Demirel
[4] incorporate YCbCr model into their method. They
use statistical analysis of fire’s colour trained by their
test set. Colour presents valuable information but it
cannot be used solely as many objects share the same
colour as a real fire. Fire’s colour, shape and spatial
change are the detected features in the work of Liu et
al. [5]. Liu et al. observed that each of fire’s colours
can be distiguished by its typical relative position. The
flame’s centre (core) is always the brightest spot. Mov-
ing from the centre this colour becomes yellow, orange
and red. The shape of every fire region is given by its
border. This border is represented by one-dimensional
signal composed out of N points — pixels of fire re-
gion’s border. Fire’s shape is then described using a
Fourier Descriptor. In every single frame Liu et al. cal-
culate the coefficients of Fourier series of the border
of every fire region. After that it is observed how these
coefficients change in time. Liu et al. presume fire’s
basic shape — its low-frequency components — stays
the same. However, high coefficients will exhibit large
change and therefore can be detected. Recognition
of fire’s shape and spatial change with this method
is extremely accurate (authors state 99% accuracy),
however, it fails in case of partly visible fire border.
A trained colour model, frequency scanning, spatial
change and motion analysis are used for detection in
the work of Töreyin et al. [6]. Precalculated distribu-
tion of possible fire colours in RGB model space is
compared to the colour of each pixel. The decision

model is created using a combination of several pre-
trained normal distributions. Spatial wavelet analysis
is used for frequency scanning. It can detect flickering
(oscillation) of fire pixels. For the analysis to be able
to capture a pixel’s frequency between 1 and 10 Hz,
the video’s frame rate must be at least 20 frames per
second. In case this frame rate cannot be reached, the
analysis may fail to detect the correct frequency. The
spatial change monitoring is performed using wavelet
analysis. Spatial change is caused mainly by turbulent
and random motion of pixels which is one of fire’s fea-
tures. Any other object should exhibit only very subtle
or no random motion. Spatial change and frequency
analysis differentiate fire well but only work without
too much noise in the input or when the fire is not too
distant from the camera. Moving regions are detected
using a modified method of background subtraction.
Çelik et al. [7] uses a pretrained colour model and also
detects fire’s motion by creating and updating a model
of background. Video’s background is modelled using
normal distribution. Using such real-time models is
quite computationally expensive and requires some
time to initialize their parameters. However, later on
they can adapt to changes in the environment. Lastly,
there is fire’s smoke generation. Detection of gray
smoke by image separation is a part of the work of
Tian et al. [8]. A background model is constructed
and the smoke is detected by its gray colour and par-
tial transparency. Recognition of smoke can influence
fire detection but, as sometimes the smoke is almost
absolutely transparent, such detection might fail.

Deep learning using deep convolutional networks
presents a modern way of detection today. There are
different tools that allow working with these network
models. There is Theano [9] for Python, Torch7 [10]
built on Lua and Caffe Deep Learning Framework [11]
for Python and C++. As Caffe presented the fastest
results in deep learning with deep convolutional neural
networks at the beginning of my work and I used C++
for the development, I chose Caffe.

A short overview of my solution follows. The first
part that needed to be dealt with was the fire data crea-
tion. I recorded several static scenes with a camera.
The best way I found to gain realistic fire effect was to
use a 3D modelling tool, specifically Blender1. With
it, I modelled the scene with a burning fire, rendered it
and pasted it onto the frames of the recording. My so-
lution involves experiments based on two approaches
to created fire sequences and their initiation into a
model’s training — per image and per segment and the
comparison of their results. I created a sampler that

1Blender Online Community: http://www.blender.org/



was used to sample the fire recording according to a
given approach. The model was created, trained and
tested using Caffe [11].

To sum up, I created a way that allows anyone
who is at least a little experienced in 3D modelling to
create a fire animation, sample it and use it for a fire
model’s training. The compositor and sampler present
applications that can even be used in separate projects.
As for the detection so far, I experimented only on
images. The detector’s per segment approach trained
only on modelled fire showed that it can be used for
real fire detection with 50 out of 50 correct detections.
In the future work more data will be created and more
varied scenes will be used for fire creation. Video
detection is also a part of the future work.

2. Fire Video Rendering and Composi-
tion

The proposed method of fire detection using convolu-
tional neural networks requires a vast number of testing
data. Each testing sample must be a short sequence of
fire burning in a real-life environment. Using the tech-
niques described below I created 2000 frames of fire
animation footage which can be used for detection
testing.

2.1 Fire Video Sequences Creation
The main disadvantage of fire detection is that fire on
its own represents a not so common phenomenon. Its
size, shape, dynamics and colour are very variable. It
is not an easy task to find an extensive quality resource
for fire images let alone fire animations. In this paper
I used a different approach to normal video creation.

Instead of filming a real-life fire, a normal scene
without fire was filmed with a static camera. The ca-
mera’s resolution was 1920×1080 pixels. For every
scene, its low-poly 3D model is created in Blender
version 2.71+. The notion is to create a fire simulation
in the modelled environment (an animation of burning
fire) and render it using Blender’s Cycles ray tracing
renderer. Then extract it, together with all of its light-
ing effects and shadows it creates in the scene, and
paste all of these onto the frames of the filmed scene.

Creating my own 3D modelled fire has the advan-
tage of total control over its appearance, behaviour
(physical simulation) and its lighting effects on the
environment. There is also no problem in changing the
camera view.

I have filmed a total of 10 static scenes that capture
different kinds of environments of both exterior and
interior. I chose 2 of these scenes and created their
correspoding 3D models. An illustration of the created

(a)

(b) (c)

Figure 1. Demonstration of the created Scene 1 and
its comparison to the original image: a - scene’s 3D
model view in Blender, b - original image used as
modelling template, c - rendered scene in the same
view as the original captures.

Figure 2. Fire material node setup in Blender.

outdoor scene, Scene 1, can be seen in Figure 1.
To add fire to this scene, Blender’s fire simulation

and physics engine are used. I have created my own
adjustable fire material — fire shader. The setup for
this material in Blender and its settings can be seen
in Figure 2. Fire is simulated at multiple locations in
the scene model and a different random seed for the
simulation is always used. I added blowing wind to the
scene completely randomly for a more realistic effect
of a burning fire. This guarantees that fire animations
never look the same.

The fire scene data is rendered into multiple ima-
ges — fire and smoke foreground, scene’s shadows,



(a) Foreground fire (b) Shadow mask

(c) Light mask (d) Pixel mask

Figure 3. Display of rendered data from a random
sequence frame.

scene’s fire light emission — and is later composited
into images of a sequence. Part of the rendering pro-
cess is the creation of a fire pixel mask which is used
as an annotation for the detection. All of the Blender
outputs are shown in Figure 3.

The scene models and scripts needed for batch
rendering can be found on the supplementary material
website.

2.2 Fire Sequence and Real-Life Scene Com-
position

Rendered fire animations from Section 2.1 need to be
composited with the frames of a filmed scene. To have
as much control over fire images (animations) creation
as possible, I programmed my own compositor using
the OpenCV library [12]. I created it universally so it
can be used for different kinds of compositing and not
just for the creation of fire images.

Using the rendered fire sequence from Section 2.1
and my compositor the final fire video can be created.
The process of a single fire frame creation and com-
positing can be seen in Figure 4 with numbered steps
1−5.

1. In the top right corner there is the original image
extracted from a video sequence. This becomes
the compositor’s background.

2. At first, this image is masked to forbid the com-
positor to change the areas that are not supposed
to change in the video. In case of the example
image in Figure 4 this mask is used on the bush
which is very close to the camera in the extracted
frame.

3. Masking is followed by multiplication with a
shadow mask. Shadows, which are stored in a
grayscale image, darken parts of the frame.

4. After that fire light emission mask is added
that lights up pixels just like a real fire would
when burning. Simple addition is used for this
step. Emission masks should be mainly used on
scences which are poorly lit. Adding them to a
sunny scene would be counterproductive.

5. On top of that an image containing the rendered
fire is added using alpha-blending. This image
preserves alpha channel and acts as a simple
overlay.

All of these components combined create a fire
frame. A short sequence of these fire images together
with their corresponding fire pixel masks serve as a
single testing sample.

Figure 4. Depiction of test image creation: 1 - video
frame image extraction, 2 - pixel mask application, 3 -
shadow mask multiplication, 4 - emission mask
addition, 5 - fire foreground addition (= fire image
generation), X - fire mask and fire image output.

Figures 5 and 6 show examples of composited fire
images from different scenes.



(a)

Figure 5. Examples of composited fire images from
Scene 1: a - original video frame image before
composition.

(a)

Figure 6. Examples of composited fire images from
Scene 2: a - original video frame image before
composition.

The compositor source code files and complete
manual to using the interface can also be found on the
supplementary material website.

SAMPLE DEPTH

SA
M
PL

E
HE

IG
HT

SAMPLE
WIDTH

Figure 7. Example of a 5×5×4 segment
represented by its labels (black = positive (fire) pixel,
white = negative (non-fire) pixel).

3. Training Fire Samples Creation

The resulting fire sequences from Section 2.2 serve as
training and testing data for the detector. The detec-
tor is supposed to learn patterns and parameters from
its input and recognise these during fire detection. I
propose three different approaches to the detector’s
training - per the entire image, per pixel and per seg-
ment. Per pixel and per image are special cases of
per segment approach. For video analysis, every sam-
ple may have its depth that corresponds to a certain
number of frames. To sample the data in these ways I
created a separate sampler using the OpenCV library
[12].

The sampler takes 2 sequences of images as in-
put — fire images and pixel labels of these images.
The required labels are binary masks (black and white)
that can be generated from fire masks from Figure 4
using my compositor. A starting frame is chosen from
this sequence and a subsequence of a set sample depth
beginning with this frame is analysed for samples. An
example of a sample with dimensions of 5×5×4 from
such a subsequence of labels is shown in Figure 7.

The sampler contains different settings that influ-
ence the generation of samples. These include:

• sample dimensions,
• required percentage of fire pixels in a sample’s

volume to be negative/positive,
• the maximum number of required negative or

positive samples,
• percentages of maximum number of samples

within a subsequence,
• random or constant step between sequence’s

frames when picking candidates for subsequences’
first frames,

• random or constant step between filtered sam-
ples when picking candidates from sample lists,

• positive/negative samples ratio (used within a
subsequence),

• postprocessing options (e.g. resizing) after ge-
neration.



An example of one iteration of the sampling pro-
cess can be seen in Figure 8.

1. In the left part of Figure 8 there is an example of
a fire sequence that contains both the labels and
the composited fire images. This sequence is
traversed and a starting frame of a subsequence
of given sample depth is chosen according to the
sampler’s settings (e.g. randomly).

2. The subsequence’s frames are selected and ana-
lysed separately.

3. Lists of all negative and positive samples avai-
lable on the given subsequence are generated
(neutral samples are discarded) according to the
sampling rules (e.g. all segments with fire pixels
volume above 50% are put into the positive sam-
ples list). These lists are then filtered according
to the current settings, e.g. the required ratio of
positive/negative samples and their maximum
number.

4. All the samples that passed the filtration are
stored.

The sampler source code files and a manual to
using the interface can also be found on the supple-
mentary material website.

4. The Fire Detector
I used Caffe Deep Learning Framework [11] for the
implementation of the detection method.

The detector uses the same structure of the deep
convolutional neural network that was proposed in the
work of Krizhevsky et al. [1] for Imagenet classifi-
cation challange [13]. In the Caffe environment, this
net structure is referred to as Caffenet and it is shown
in Figure 9. For images, this model is extremely ver-
satile. For video detection in the future work it must
be adapted. I made a few changes to the net’s struc-
ture though. One was changing the input layer to the
corresponding image dimensions when conducting ex-
periments. As my aim is to find fire in an image, there
are only two labels in my dataset — fire and non-fire
image (segment). As Caffenet was originally created
for classification task that involved hundreds of classes,
the training process would be a lot longer without this
change.

For image detection I completely omitted the per
pixel approach as the necessary training process was
extremely lengthy and a single pixel does not include
that much information. It will be a part of the fu-
ture tests. Experiments test the detection’s results of
per 128×128-pixel and 256×256-pixel segment ap-
proaches and per image approach in single images.

The convolutional net’s input is an image of the spe-
cific size and its output is a number that represents the
probability of classifying this image as fire.

I used 3 — training, validation and testing — sets
of data for the experiments. For convolutional net-
work’s training I used the composited 3D fire images.
One sample of per image approach corresponds to one
unsegmented image. Every image that enters the net,
when using this approach, must be resized in the first
layer to a maximum of 256×256 pixels as larger reso-
lutions cause extreme slowdowns and this size should
capture just enough details. As the net’s structure is
created to accept any kind of image and resizes them
during processing, any image of a varied size is con-
sidered a sample. For per image training I picked 900
fire images from the composited 2000. I picked 800
images from the rest of these for the model’s valida-
tion. I omitted 300 images that looked quite simi-
lar to the already used ones. Then I collected 1280
real non-fire images of mostly city buildings from La-
belMe2 database. All of these images were of a varied
size starting at 640×480 pixels. 780 of these are used
for per image training (as non-fire samples) and 500
are used for validation.

For per segment approach I sampled the 900 train-
ing fire images and 780 non-fire images using these
main options set for samples generation:

• sample depth is always equal to 1,
• positive sample has more than or equal to 50%

of its area formed by fire pixels,
• negative sample has less than or equal to 20%

of its area formed by fire pixels.

I generated 1300 fire samples and 1010 non-fire sam-
ples of 128×128 pixels. Then I generated the same
amount of samples of 256× 256 pixels. These were
used for per segment training. For per segment vali-
dation, I sampled the images used for per image vali-
dation and acquired 800 fire samples and 800 non-fire
samples of 128×128 and 256×256 segments respec-
tively.

The described validation data is meant to measure
the neural network’s accuracy on a similar but not the
same dataset as the training data.

The training set sizes together with the required
training time for 3 models is shown in Table 1. The
accuracy of these models tested on the validation set
is presented in Table 2. The results show that per seg-
ment approaches are more capable of distinguishing
modelled fire.

2LabelMe website: http://labelme.csail.mit.edu/



FIRE/LABELFIRE/IMAGE
FIRE IMAGE/LABEL SEQUENCE

0e

2e

0e53e

25e

NEGATIVE/(0e)

NEUTRAL/(25e)

POSITIVE/(53e)

NEGATIVE/(0e)

NEGATIVE/(2e)

SAMPLING RULES

SAMPLE/DEPTH:

NEGATIVE/SAMPLE:

POSITIVE/SAMPLE:

NEUTRAL/SAMPLE:

20e/FIRE/PIXELS≤

50e/FIRE/PIXELS≥

20e/FIRE/PIXELS/>
< 50e/FIRE/PIXELS

4/FRAMES

NEG/POS/RATIO:
1/3

IMAGE/LABEL
DATABASE

time(t)

tim
e(
t)

1 3

2

4

SAMPLE/WxH:
50x50/PIXELS

Figure 8. Depiction of samples creation: 1 - fire frames and labels traverse, 2 - sample frames selection, 3 -
frame labels analysis according to the sampling rules and location of possible samples of given dimensions, 4 -
positive and negative samples extraction and their storage in the database.

Figure 9. Deep convolutional neural network structure used in the work of Krizhevsky et al. [1] for Imagenet
classification. Image adapted from article [1].

My goal is to create a detector of a real fire. There-
fore, for real fire tests I used separate images down-
loaded from LabelMe which included 50 random real
fire images and 50 non-fire images. For a true posi-
tive the detector must mark at least one visually un-
doubtable fire area with a probability higher than 50%.
The results of these tests can be seen in Table 3.

The net’s initial learning rate was set to 0.001. In
case of a higher number (faster learning) the net’s
weights would reach too high numbers and the net
would require a change in topology. Such changes —
e.g. adding rectifier (ReLU) units to correct output
weights — increased the processing time and were
therefore undesirable. I set the number of training
epochs (number of passes over the entire training data)
to about 50 as higher numbers did not make a differ-

ence in validation accuracy. The only difference was
that the training process took almost twice as much
time. This might have been caused by the limited num-
ber of scenes that are very familiar and the net learns
them too well.

As can be seen in Table 3, per image approach
was the least successful. This was probably caused
by many different details around the fire in an image
that the classifier fails to distinguish. Per segment
approach was far better scoring 100% true positives.
Examples of the correct detector’s per segment output
on fire images can be seen in Figure 10. 256× 256
segments sometimes failed to find fire in comparison
to smaller segments. This can be seen in Figure 12.
Smaller segments caused more false detections though
which can be seen at the example of a fire station in



Table 3. Real fire image tests comparing the results of per image and per segment approaches. Left column
contains the sizes of segments or images used as real input testing samples of an approach (per image data
contains samples of variable size). Second and third column, Fire images and Non-fire images, present the
numbers of these images used for testing. TP (true positives) presents the percentage of correctly detected fire in
50 real fire images (only stating that there is/is not fire in the image by marking at least one fire area with a
probability higher than 50%). FP (false positives) gives the percentage of false detections in 50 non-fire images.
Processing time is the time required to process one sample of Sample size from the input image.

Per segment

Sample size Fire images Non-fire images TP FP Processing time

128×128 50 50 100% 24% 0.11 seconds

256×256 50 50 84% 5% 0.11 seconds

Per entire image

VARIED 50 50 6% 2% 0.20 seconds

Table 1. Training information showing the
comparison of per segment and per image approaches.
Left column contains the sizes of segments or images
used as input training samples (per image data
contains samples of variable size). Fire and Non-fire
samples present the numbers of these samples and
Training time is the time (in hours) required to train
the model. All the training fire samples contain only
3D modelled fire.

Per segment

Sample Fire Non-fire Training
size samples samples time

128×128 1300 1010 4 hours

256×256 1300 1010 4 hours

Per entire image

VARIED 900 780 5 hours

Figure 11(a). These errors were mostly caused by
scenes that contained colour blobs similar to fire. An
example of a detected fire per segment in a scene that
contains many fire patterns and colours is shown in
Figure 11(d). None of the methods recognised this
non-fire environment. The biggest problem of per seg-
ment approaches is the processing time. To process an
image of 1024×768 pixels, when using per 128×128
segment approach, it must be divided in a grid-like
manner into at least 48 128×128 segments which take

Table 2. Validation results comparing the approaches
of per segment and per image. Left column contains
the sizes of segments or images used as input
validation samples (per image data contains samples
of variable size). Fire and Non-fire samples present
the numbers of these samples and Accuracy is the
accuracy of the model’s classification on the
validation data. All the validation fire samples contain
only 3D modelled fire and are different from the
training data. This table shows how well the models
can classify artifical fire.

Per segment

Sample Fire Non-fire Accuracy
size samples samples

128×128 800 800 98%

256×256 800 800 98%

Per entire image

VARIED 800 500 89%

approximately 5 seconds altogether to process. In the
future a heuristic could be employed that would dis-
card regions that definitely do not contain fire which
would decrease the processing time.

All these experiments were conducted on a laptop
with Nvidia GTX 980 GPU.

Other examples can be found on the supplementary
material website.



(a) Original fire image 1

(b) Per segment 128×128 (c) Per segment 256×256

(d) Original fire image 2

(e) Per segment 128×128 (f) Per segment 256×256

0 20 40 60 80 100
%

Figure 10. Fire detector’s results on real fire images
of burning houses 1 (a, b, c) and 2 (d, e, f): a, d -
original fire images, b, e - heatmap output of the
detector trained using 128×128 pixel samples, c, f -
heatmap output of the detector trained using
256×256 pixel samples, legend: heatmap colours
ranging from dark blue (0% probabilty of fire’s
presence) to dark red (100% probability of fire)

5. Conclusions

This paper deals with fire detection in image and video
using machine learning. It describes a mechanism
for artifical fire sequences creation and generation of

(a) Original non-fire image 1

(b) Per segment 128×128 (c) Per segment 256×256

(d) Original non-fire image 2

(e) Per segment 128×128 (f) Per segment 256×256

0 20 40 60 80 100
%

Figure 11. Fire detector’s results on real non-fire
images of a red building (a, b, c) where the 128×128
segment approach causes a false detection and a cave
(d, e, f) that consits of similar patterns and colours of
fire which cause many false detections: a, d - original
non-fire images, b, e - heatmap output of the detector
trained using 128×128 pixel samples, c, f - heatmap
output of the detector trained using 256×256 pixel
samples, legend: heatmap colours ranging from dark
blue (0% probabilty of fire’s presence) to dark red
(100% probability of fire)

variable fire samples (shorter animations) from these
sequences. These are then used as training data for



(a) Original fire image

(b) Per segment 128×128 (c) Per segment 256×256

0 20 40 60 80 100
%

Figure 12. Fire detector’s results on a real fire image
where the 256×256 segment approach fails to detect
fire: a - original fire image, b - heatmap output of the
detector trained using 128×128 pixel samples, c -
heatmap output of the detector trained using
256×256 pixel samples, legend: heatmap colours
ranging from dark blue (0% probabilty of fire’s
presence) to dark red (100% probability of fire)

a deep convolutional neural network model that forms
the base of my fire detector. The detector is imple-
mented using Caffe Deep Learning Framework [11].
Experiments test the detector on an image dataset us-
ing two approaches during training — per image and
per segment.

I filmed and created 3D models of 2 outdoor scenes.
I created 8 different fire simulations in these scenes.
Then I rendered 2000 frames of fire animations and
composited them with the filmed scenes into complete
fire videos. Examples of these frames are shown in
Figures 5 and 6. I used them to train 3 different models
using 2 approaches to detection. These were tested
on similarly modelled fire and non-fire images and
the best scored 98% accuracy. For real fire tests, per
segment approach with 128×128 segments reached
50 out of 50 correct fire detections. I reached and
surpassed my goal of 95% of true positives detected.
Reaching 100% is the most important outcome for
a fire detector. False positives reached 24% for this
model. Time required to process an image was in units
of seconds. 256× 256-segment model reached 5%
false positive rate. Improvement might be achieved by

training with fire data in more varied environments.
The things and ideas that I consider the most viable

are:

• use of a modern method of deep learning for fire
detection,

• training of the fire detector based entirely on
unreal 3D modelled fire,

• successful experiments on images and an open
door for video testing.

In the future work I will add more varied scenes
for fire sequences creation. I will continue developing
video detection. By adding a temporal element to fire
samples, I will see how the detector will be doing and
compare these results to its output from still images
detection. The sampler and compositer tools may also
be useful for other researchers working in this field.

Acknowledgements
I want to express my gratitude to Doc. Ing. Adam
Herout, Ph.D. for his time, materials and professional
guidance that he provides me with.

References
[1] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E.

Hinton. Imagenet classification with deep con-
volutional neural networks. In F. Pereira, C.J.C.
Burges, L. Bottou, and K.Q. Weinberger, editors,
Advances in Neural Information Processing Sys-
tems 25, pages 1097–1105. Curran Associates,
Inc., 2012.

[2] Thou-Ho Chen, Ping-Hsueh Wu, and Yung-
Chuen Chiou. An early fire-detection method
based on image processing. In Image Processing,
2004. ICIP ’04. 2004 International Conference
on, volume 3, pages 1707–1710 Vol. 3, Oct.

[3] J.G. Qunitiere. Principles of fire behavior. Ca-
reer Education Series. Delmar Cengage Learning,
1998.

[4] Turgay Çelik and Hasan Demirel. Fire detection
in video sequences using a generic color model.
Fire Safety Journal, 44(2):147–158, 2009.

[5] Che-Bin Liu and N. Ahuja. Vision based fire de-
tection. In Pattern Recognition, 2004. ICPR 2004.
Proceedings of the 17th International Conference
on, volume 4, pages 134–137 Vol.4, 2004.

[6] B. Uğur Töreyin, Yiğithan Dedeoğlu, Uğur
Güdükbay, and A. Enis Çetin. Computer vision
based method for real-time fire and flame detec-
tion. Pattern Recogn. Lett., 27(1):49–58, January
2006.



[7] Turgay Çelik, Hasan Demirel, Hüseyin Özkara-
manli, and Mustafa Uyguroglu. Fire detection
using statistical color model in video sequences.
J. Vis. Comun. Image Represent., 18(2):176–185,
April 2007.

[8] Hongda Tian, Wanqing Li, Lei Wang, and
P. Ogunbona. A novel video-based smoke detec-
tion method using image separation. In Multime-
dia and Expo (ICME), 2012 IEEE International
Conference on, pages 532–537, July 2012.

[9] James Bergstra, Olivier Breuleux, Frédéric
Bastien, Pascal Lamblin, Razvan Pascanu, Guil-
laume Desjardins, Joseph Turian, David Warde-
Farley, and Yoshua Bengio. Theano: a CPU and
GPU math expression compiler. In Proceedings
of the Python for Scientific Computing Confer-
ence (SciPy), June 2010. Oral Presentation.

[10] Ronan Collobert, Koray Kavukcuoglu, and
Clément Farabet. Torch7: A matlab-like envi-
ronment for machine learning.

[11] Yangqing Jia, Evan Shelhamer, Jeff Donahue,
Sergey Karayev, Jonathan Long, Ross Girshick,
Sergio Guadarrama, and Trevor Darrell. Caffe:
Convolutional architecture for fast feature em-
bedding. arXiv preprint arXiv:1408.5093, 2014.

[12] G. Bradski. The OpenCV Library. Dr. Dobb’s
Journal of Software Tools, 2000.

[13] Olga Russakovsky, Jia Deng, Hao Su, Jonathan
Krause, Sanjeev Satheesh, Sean Ma, Zhi-
heng Huang, Andrej Karpathy, Aditya Khosla,
Michael Bernstein, Alexander C. Berg, and
Li Fei-Fei. ImageNet Large Scale Visual Recog-
nition Challenge, 2014.


	Introduction
	Fire Video Rendering and Composition
	Training Fire Samples Creation
	The Fire Detector
	Conclusions
	References

