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'''print("Demo template!");'''
[general]
{exactlyOnce} pvss_path = "C:/Siemens/" || "/opt/Siemens"
proj_path = ''(value.toLowerCase().startsWith("c:/projects/"))''
[ui]
showActiveShapes = 0
checkADAuthIntervall = >= 60

Abstract
CERN (European Organization for Nuclear Research) is one of the biggest research organizations
in the world. It heavily uses SCADA (Supervisory Control And Data Acquisition) software for their
scientific and industrial machines. This paper tackles a problem of verifying that configuration files
used by CERN’s SCADA (WinCC Open Architecture) software are correct and comply with CERN
standards.
The aim was to develop a tool that gives SCADA developers and administrators ability to easily
create templates that describe how certain configuration files should look like and determine
whether templates match configuration files.
This paper introduces a tool that solves the problem by using a specially designed domain-specific
programming language and an interpreter of the language.
The language itself is based on declarative paradigm and its fundamental capabilities can be
extended by JavaScript injection. As for the interpreter, it uses Xtext-based parser to convert
configuration files and templates into form of abstract syntax trees (ASTs). The execution itself is a
combination of AST interpretation, translation of certain parts of AST into a JavaScript code and
running JavaScript code on top of the Java Virtual Machine.
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1. Introduction
CERN (European Organization for Nuclear Research)
is one of the biggest research organizations in the
world. It uses many scientific, industrial and cus-
tom built machines that are supervised/operated using
SCADA (Supervisory Control And Data Acquisition)
software, which is mainly developed for WinCC Open
Architecture platform. The platform uses specific C-
like programming language for development and spe-
cial configuration files responsible for setting up the
SCADA applications.

In order to make development of SCADA appli-

cations at CERN easier and safer, Eindhoven Univer-
sity of Technology conducted a research and created a
prototype of an Eclipse-based IDE, primarily focused
on writing, analyzing and debugging the C-like code.
While I was working at CERN, my task was to con-
tinue in this project to improve capabilities of the IDE
and make it ready for real-world usage.

One of the requirements for the IDE was that it
has to be able to verify correctness of configuration
files for SCADA applications. This functionality is
very important because SCADA applications at CERN
are used among others for critical systems (accelera-
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Figure 1. Usage of SCADA applications at CERN.

tors, cryogenics, electricity etc.), and using incorrect
configuration files could have serious consequences.
In addition, the configuration files are often extensive
and complex. It means that it is time consuming and
difficult to manually check whether a configuration is
correct.

The purpose of this paper is to introduce a part
of the IDE that is responsible for the verification of
configuration files. In order to do so, we need to un-
derstand the requirements:

• Correct configurations should be described us-
ing some kind of templates in text form.
• The templates should be familiar to people

who know configuration files and have basic
knowledge of programming.
• The implemented tool should be integrated into

the IDE.

After analyzing this demands, it soon became clear
that there is no existing solution that could be easily
reused, and the most direct way of tackling the problem
is a specially designed programming language and its
interpreter (in other words, the template is interpreted
in order to verify correctness of a configuration file).

The basic idea here is that the core syntax of the
new domain-specific language (hereinafter referred
to as DSL) is similar to the syntax of configuration
files. Therefore, the language has steep learning curve
and users can copy-paste parts of configuration files
directly into templates.

Technologies used for the language implementa-
tion are Eclipse, Xtext, Java and JavaScript. The usage
of the Eclipse Platform is obvious choice since the tool
should be part of the Eclipse-based IDE. Xtext is a very
convenient framework that simplifies parser implemen-
tation and integration with Eclipse. Java and JavaScript
are general-purpose programming languages used for
the implementation itself.
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Figure 2. Basic principle of how configuration files
are verified to be correct. The figure shows that the
interpreter can compare one or many configuration
files with a template at the same time and produces a
report stating what configuration files do not match
the template and where is the problem.

The proposed DSL and implemented software has
proven to be working in real-world environment at
CERN. It also demonstrates modern and progressive
trends of using JavaScript as means of execution in-
stead of bytecode and machine code.

2. Configuration files

In order to design a template language for configura-
tion files, we need to understand the structure of con-
figuration files. The basic syntax is shown in Figure 3
(Extended Backus–Naur Form of metasyntax notation
is used) and a simple example of a configuration file
is shown in Figure 4. For purposes of this paper, it is
enough to know that the configuration files are very
similar to INI files (although they are not exactly the
same), and their content consists of 0..n sections and
every section contains 0..m properties, each with 1..k
values.

3. Template language design

Designing the language itself is the first step that needs
to be done after requirements are gathered. It consists
of syntax definition and semantics definition. Both
(syntax and semantics) have to be unambiguous.

It is important to realize that language design can
have a big impact on learning curve, interpreter per-
formance, parser complexity (complex languages re-
quire complicated parsers and such parsers are usually
slower), language extensibility etc. Therefore, the core
syntax of the DSL was designed to be as simple as



ConfigModel:
sections+=Section*

;

Section:
’[’ name=KEY ’]’
content+=Property*

;

Property:
(’(’param=(SUBSTITUTION|KEY)’)’)?
name=KEY ’=’ values+=Value+

;

Value:
NumberValue
|StringValue

;

Figure 3. This code represents the basic syntax of the
configuration file written in Xtext grammar language.
Such language description is then used to generate a
parser and a set of Java classes that represent the AST
model.

[general]
proj_path = "C:\MyProject\scripts"
pmonPort = 5687
[dist]
distPeer = "PC1324" -3

Figure 4. An example of a simple configuration file.
In this case, the content consists of two sections
(general and dist). The first section has two properties.
One with a string value and one with an integer value.
The second section has only one property with two
values (string and integer).

possible; to benefit from following advantages:

• Designing a language is usually an iterative pro-
cess that requires feedback from users. Simple
languages are easier to explain to users and can
be changed rapidly.
• Simple languages are usually consistent and in-

tuitive.
• Extending the syntax of a simple language is

much easier than trying to extend complicated
syntax.
• Parsing and interpretation of simple languages

is relatively easy to implement and optimize.

[general]
proj_path = startsWith "C:\"
{never} pmonPort = < 1024

Figure 5. This example demonstrates the basic
concept of the rules. The first rule starts on line 1. Its
meaning is: search the configuration file, find all
sections with name general and on each section apply
the sub-rules (proj path and pmonPort). This rule also
has to succeed at least once and it can never fail. More
formally, (S>0 ∧ F=0, findSections(”general”, AST),
{proj path:Rule, pmonPort:Rule}) The last (sub)rule
is probably most self-explanatory. It means that in
currently tested general section, there can never be
pmonPort property with an integer value less than
1024. Formally, (S=0 ∧ F ≥ 0,
findProperties(”pmonPort”, AST-general-subtree),
{value < 1024}).

3.1 Basic concepts of the DSL
The core of the language is built around several con-
cepts, and each concept serves the purpose of the lan-
guage.

[Everything is a rule] In the language everything
is a rule. There are several types of rules. Each type
serves different purpose so they differ by their syntax
and context of usage. Despite the differences, all rules
can be defined as follows:

A rule is a triple (λ ,ϕ,R) where:

• λ is a predicate that returns true/false, depend-
ing on how many times the elements of R suc-
ceeded (S) or failed (F) in ϕ . This predicate
decides whether the entire rule succeeded or
failed.
• ϕ is a function that takes as its input the AST of

a configuration file (or its subtree) and returns a
set of subtrees of the given AST.
• R is a set of sub-rules/code that is evaluated in

the context given by ϕ .

An example of how rules can look like when im-
plemented in a template, is shown in Figure 5. There
is also a possibility to use more advanced syntax for
definition of the rules. This syntax then allows pro-
grammers to customize the rules and use it in special
cases (by default it is recommended to stick with the
basic language constructs).

[Declarative paradigm] The language is based on
declarative paradigm. In common cases, programmers
declare only rules and do not care about sequences of
rules execution etc. This makes possible (in an ideal
situation) to reuse the same rules among multiple tem-
plates without having to worry about affecting other



#following basic constructs
[general]
{never} pmonPort = < 1024

#alternative equivalent version
using JS injection

[’’(sectionName == "general")’’]
{’’(passed == 0 && failed >= 0)’’}

pmonPort = ’’(value < 1024)’’

Figure 6. This example demonstrates the ability of
the language to replace most of its high-level
constructs with JavaScript code. Notice that variables
used in JavaScript code are context-dependent. For
instance, if we want to replace the part responsible for
success/fail counting ({never}), we can access the
information of how many times the rule passed/failed
via values stored in variables passed and failed,
provided by the language interpreter at runtime.

rules.
[JavaScript integration] To support the variety

of different features requested by the users, the lan-
guage supports JavaScript code injection. This means
that all basic language constructs can be replaced by
JavaScript code. An example demonstrating this usage
of JavaScript can be seen in Figure 6.

[Separated scopes] Every type of the rule is re-
sponsible for providing a scope for its children rules.
The root of the rules-tree provides a shared scope for
all of its child-rules, and child-rules should inherit this
scope, optionally add some variables to it and again
pass it to their child-rules (if they have any).

Theoretically, rules can use their parent-scope to
run JS code (so they can change their parent-scope).
Nevertheless, in reality, all types of rules (except global
rules) run their JS code in a local scope inherited from
the global scope that is shared among global rules (we
can think about it as accessing the parent-scope in
”read-only mode” so it cannot be changed).

A simple example: Let us have a global rule that
defines variable a (var a = 5;). Then all rules exe-
cuted after this global rule can access variable a. An-
other global rules can change its value (a = ”different
value”;), the rest of the rules can only read it (print(a);)
or shadow it, without affecting the original value (var
a = true; // this will not change the value of variable

’a’ in the global scope).
The reason why the rules have separated scopes is

their portability. In most cases, we can simply take a
rule from template A and put it into template B, and
we can be sure that the original rules in template B are
not affected by the newly added rule.

terminal SCRIPT_CODE:
"’’’" -> "’’’"

;

terminal ALGORITHM_CODE:
"’’{" -> "}’’"

;

terminal EXPRESSION_CODE:
"’’(" -> ")’’"

;

Figure 7. Terminals responsible for JavaScript
handling. Their semantic is that everything between
the three introducing and closing symbols is a
JavaScript code: ’’’JS’’’, ’’{JS}’’,
’’(JS)’’.

4. Template language parser
When we have a properly designed language, or at
least a language concept, we can implement a parser.

In case of the template language, there are two dif-
ferent parsers. The first parses the high-level language
constructs (see Section 4.1) and the second takes care
of pieces of injected JavaScript code (see Section 4.2).

4.1 Xtext-based parser
The high-level parser is Xtext-based. It means that a
grammar of the template language is written in Xtext
grammar language and then automatically translated
into a Java parser and AST model (EMF model).

The language grammar is around 260 lines of code
long and not responsible for JavaScript code parsing.
Instead, on places where JavaScript syntax is expected,
it uses so called until token to consume everything
until a certain token occurs. The grammar terminals
responsible for JavaScript code handling are shown in
Figure 7.

4.2 Nashorn engine parser
The Xtext-based parser is able to create an AST out of
a template code and thanks to the terminals presented
in Figure 7, it can store JavaScript code as plain-text
(string value) in the AST.

JavaScript code stored as part of the template AST
is not parsed immediately, but rather at the time of
template execution. The reason is that the template lan-
guage parser does not perform any semantic analysis
which would require JavaScript AST, so the JavaScript
parsing can be postponed until execution time.

Another argument for parsing JavaScript at run-
time is that some pieces of injected JavaScript code do
not have to be executed at all. Imagine a template rule



that is executed for every proj path property in general
section. If the tested configuration file does not have
a section named general or it has no proj path prop-
erty, then the content of the rule (i.e. JavaScript code)
is never executed. Therefore, it makes no sense to
eagerly parse it. What makes sense is to lazily parse/-
compile the code at the point when it is needed for the
first time, store the compiled form of JavaScript and
then reuse it when the rule is executed again.

[Coexistence of two parsers] There exist several
reasons why there are two different types of parsers
used to parse the whole template language:

• Time-saving - Implementing JavaScript parser
by using Xtext would be difficult and
time-consuming. By reusing already created
JavaScript parser which is part of JDK 8, we
shorten the implementation phase.
• Performance - As mentioned before, many pro-

grammatically generated parsers are not very
efficient (this applies also to Xtext). The lack
of performance is especially noticeable when
parsing complex languages and large pieces of
source code. For this reason, it makes sense to
create an Xtext-based parser only for high-level
constructs (relatively easy and fast to parse) and
use more optimized parser for JavaScript parts.
• No need for JavaScript AST - One relative ad-

vantage of Xtext is that it also automatically gen-
erates AST models for parsers. Such models can
be used for linking, code analysis etc. However,
in this case we do not perform any analysis re-
lated to JavaScript code so it would be pointless
to even use Xtext to create a JavaScript AST1.

5. Template language interpreter
The language interpreter (see Figure 8) is a hybrid
composed of several technologies and interpretation
approaches.

Generally speaking, interpreters often use three
ways of code interpretation. They either interpret an
AST or bytecode or they compile code (at runtime)
into some kind of machine code that can be executed
by underlying hardware.

The template language interpreter uses all three
variants of interpretation.

5.1 AST interpretation
At the beginning of the interpretation process, the in-
terpreter parses the template and the configuration file.

1If, for some reason, an access to a JavaScript AST is needed,
it is possible to use Nashorn engine to obtain the AST. See: JDK
Enhancement Proposal 236, Parser API for Nashorn

The results of parsing are ASTs. One AST represents
the template itself and the other represents the tested
configuration file.

Both types of ASTs can be theoretically interpreted
directly, but their form (EMF models) is not very suit-
able for interpretation. For this reason, the template
AST is converted into an immutable tree-like model
of rules and sub-rules, and the configuration AST is
converted into an immutable tree-like model that can
convert itself and its subtrees into JSON format (see
exec. model and config. file JSON model in the upper
part of Figure 8).

With the new models ready, the real interpretation
begins. The essence of the interpretation algorithm is
shown in Figure 10. The basic idea of the algorithm is
that it takes a rules model (i.e. exec. model in Figure 8)
and configuration model in the new form and applies
the rules from rules model to the configuration model.

[Configuration file AST in JSON] The reason,
why configuration model is done in such way that it
can be easily converted into JSON, is the interoper-
ability with JavaScript. Let us have a look at Figure 6.
The JavaScript code in the figure uses variables like
sectionName and value. These variables are context-
dependent and they point to certain parts of the config-
uration AST (an example of how a configuration file
AST in JSON format may look like is in Figure 9).

5.2 JavaScript engine and JVM execution
The algorithm responsible for AST/rules model inter-
pretation converts big part of the rules into JavaScript
and combines it with the configuration AST in JSON
format.

The algorithm then takes the generated JavaScript
and JSON, creates appropriate scope for it and exe-
cutes it via Nashorn engine. The engine parses the
generated JavaScript code and compiles it into Java
bytecode. The bytecode is then passed directly to the
JVM and now it is up to the JVM to decide whether
it will interpret the bytecode or use just-in-time (JIT)
compilation.

From the performance point of view, the over-
all template interpreter speed is sufficient. Although
the whole interpretation process consists of 4-5 steps
(template/configuration source code→ ASTs→ rules
(JSON)→ JavaScript code→ bytecode→ machine
code), most of the steps are not computationally in-
tensive. The Xtext-based parsers for the template lan-
guage and configuration files are lightweight, and the
algorithm for AST/rules model interpretation is effec-
tive because majority of its job is to generate JavaScript
code (concatenation of strings). It leaves the heavy lift-
ing to Nashorn engine and the JVM and both of them
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Figure 8. A schema of configuration template interpretation.

{
"general": [{

"name": "proj_path",
"values": [

"C:\\MyProject\\scripts"
]

}, {
"name": "pmonPort",
"values": [

45687
]

}],
"dist": [{

"name": "dist",
"values": [

"PC1324", -3
]

}]
}

Figure 9. The content of this figure represents a
configuration file AST in JSON format (the original
configuration file is in Figure 4).

have really good performance.
Also the template language execution is not a time-

critical task. In case we have many templates and con-
figuration files, we can run it on servers during night.
Additionally, the interpreter itself provides means of
parallel execution (that is why the models created from
ASTs are immutable) and it effectively uses modern
multi-core CPUs.

[Compilation to JS] It seems to be a trend of past

few years that high-level languages are translated into
JavaScript. For example, modern languages like Go,
Kotlin, TypeScript and Dart are either primarily com-
piled into JavaScript or they have experimental com-
pilers that can do it. The advantage of this way of
execution is that JavaScript engines are available for
various platforms and performance of some of them
(V8, Chakra) is generally considered to be excellent.

6. Conclusions
This paper describes the design, parser and interpreter
of a domain-specific language, whose purpose is to
verify that configuration files for WinCC OA projects
are correct and comply with the CERN-defined rules.
The language design is based on declarative paradigm
(rules), and it allows programmers to inject JavaScript
code. The parser is created by using the Xtext frame-
work, and the interpreter is combination of various ap-
proaches and technologies (AST interpretation, JVM,
Nashorn).

The practical result of this work is a software tool
that is used at CERN for verification of configuration
files correctness. It is a part of the effort to improve the
overall code quality and safety of SCADA systems.

This work is unique, because the DSL presented
here is probably the only existing programming lan-
guage that is specially designed for complex descrip-
tion and manipulation of configuration files (INI files).
Additionally, the language itself provides a specific



type SuccessAndFail = {
Success : int;
Fail : int

}

type Rule = {
CounterPredicate : SuccessAndFail->bool;
ASTFilter : ConfigurationASTNode->ConfigurationASTNode;
Execute : list<Executable>

}
and Executable =

| Rule of Rule
| Code of Code

type ExeResult = Option<FailStackTrace>

let inline (+) (acc: SuccessAndFail) (exeResult: ExeResult) =
if exeResult.IsSome then {Success=acc.Success; Fail=acc.Fail+1}
else {Success=acc.Success+1; Fail=acc.Fail}

let interpret (rule:Rule) (configASTPart:ConfigurationASTNode) =
let filteredAST = filterAST rule.ASTFilter configASTPart
let execResults = filteredAST |> List.map (internalExecution rule.Execute)
let counter = execResults |> List.fold (fun acc elem -> acc+elem) {Success=0; Fail=0}

if rule.CounterPredicate counter then ExeResult.None
else getCounterFail counter execResults

let interpretTemplateAndCOnfiguration template configuration =
let rule = convertTemplateToRule template
let configAST = convertConfigurationToAST configuration
interpret rule configAST

Figure 10. Simplified version of algorithm responsible for template AST interpretation. [F# language]

syntax for several levels of abstraction, allowing pro-
grammers to write easy-to-read high-level code and on
the other hand access low-level features (even config-
uration file AST) if needed. The design of the DSL
also offers a possibility to write code using declara-
tive and imperative paradigm, while making sure that
both paradigms seamlessly work together. Another un-
usual thing presented here is the effective way of how
various technologies (Xtext, Nashorn and JVM) can
be combined and serve as a programming language
interpreter, whose architecture has proved to be very
flexible and used technologies reliable.

As for the future development, it would be worth
it to explore the performance limits of the interpreter
design and used technologies. The implemented inter-
preter already uses several optimizations (reusing/shar-
ing of immutable models, JSON-AST caching, parallel
execution and partially lazy evaluation), and the pa-
per shows that the performance is sufficient in case
of offline verification of configuration files. However,
there are still aspects that can be improved (for exam-
ple caching and reusing of compiled JavaScript), and
it could be useful to see, where are the actual limits,

and whether this concept can be applied also in cases
where performance truly matters.
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