
http://excel.fit.vutbr.cz

CUDA Accelerated Real-time Digital Image
Stabilization in a Video Stream
Dávid Pacura*

Abstract
The most important step for successful video processing in computer vision is its stabilization.
Often, it is required to process high resolution video in a real-time. In this paper, a new method for
a real-time digital image stabilization in a video stream is presented. This method preserves the
intended camera motion and exploits computing power of GPGPU by utilizing CUDA programing
interface. In order to reduce required computation power, local search windows are used for the
correspondence search of consecutive video frames. These windows are further processed using
Local Binary Patterns, which enables fast correlation using bitwise XOR. The experiments on video
sequences from both car-mounted and hand-held camera have demonstrated the effectiveness of
this method. The speed of stabilization designates this method for video preprocessing in real-time
applications.

Keywords: Digital Image Stabilization — CUDA Video Stabilization — Real-time Video Stabilization

Supplementary Material: Demonstration Video
*xpacur00@stud.fit.vutbr.cz, Faculty of Information Technology, Brno University of Technology

1. Introduction

Over the past two decades, a rapid development in the
field of electronic technology brought, among other
things, an increase of use of digital video cameras.
Nowadays, as a consequence, a wide variety of use
cases where digital video camera is used exists (e.g.
video surveillance, reconnaissance, motion detection,
target tracing or automatic recognition). However, in
many cases, camera device is mounted on moving ob-
jects (e.g. ships, vehicles) or on high poles and towers,
where object movement or gusting wind causes camera
shaking. In a lot of these cases, high resolution, high
frames count per second and steady image without par-
asitic effects like shake, jitter and blur is required. This
is due to requirements for successful post-processing
like target tracking or movement detection [1].

However, there is often limited space, resources or
both to fulfill these requirements – usage of hardware
stabilization is in many cases highly restricted or even
impossible. Yet, a digital image stabilization can be
used. This enables a use of smaller video cameras, but
requires high computing power for post-processing.
Often, real-time processing of data is also required,
which increases requirements for computing power
even more, because not only video stabilization it-
self, but also additional required steps in the process
must be resolved almost immediately. This can be
achieved by specialized hardware like FPGA (field
programmable gate array) or using GPGPU (general
purpose graphics processing unit). However, this paper
will focus only on GPGPU because of its easy avail-
ability, low price and relatively easy programming [2].

http://excel.fit.vutbr.cz
https://youtu.be/W26qLGNMgdc
mailto:xpacur00@stud.fit.vutbr.cz


The key to video stabilization is the accurate global
motion estimation. There are many methods based on
various approaches including gray based [3], frequency
based [4] or feature based [5] methods. Also, motion
estimation can be computed in 2D [6] [7], which is
suitable for long monitoring distances in outdoor con-
ditions or 3D [8], which are suitable for low focal dis-
tances, where obvious changes in parallaxes inducted
by 3D viewpoint translations occurs. However, many
of these approaches are not suitable for real-time pro-
cessing even in case of GPGPU use.

Another important step of video stabilization is
motion filtering, when unwanted shaking and jitter
must be removed, but intended motion preserved. A
number of low pass filtering methods such as fuzzy
filtering [9] or Gaussian weighting [10] exist. However,
these methods are not suitable for real-time processing,
as they require information about previous frames, or
in worse case information about future frames, which
introduces undesirable delay. Another approaches are
use of Kalman filter [11] [12] which is an optimal filter
in the minimum variance sense. This filter is fast, but
sensitive to parameter values. Therefore, modifications
like Adaptive Kalman filter [13] [14] exists. Another
example is Particle filter [15] [16] which is suitable for
filtering of non-linear motion of the camera. However,
it has a great processing time consumption.

In our solution, a HD video is stabilized in real-
time using GPU and CUDA. For this, a binary tech-
nique is used for global motion estimation. Firstly,
eight areas of concern (SSW’s – searching sub-windows)
are selected in each frame. Then, they are binarized
using enhanced Local Binary Patterns [17] method.
Next, the correlation template (MSW – matching sub-
window) is selected as a central part of corresponding
SSW and is correlated with previous SSW using Num-
ber of non-matching points (NNMP) [17]. Then, eight
best local motion vectors (LVMs) for each SSW is se-
lected in order to enhance the motion estimation. The
last step is motion filtering. It is achieved by selection
of median value from LVMs. Selected value represents
the translation between frames. However, in order to
preserve intended camera motion, Kalman filtering of
selected translation is performed.

The proposed solution utilizes GPGPU and CUDA
to enable real-time stabilization of HD video with the
pixel precision even on older hardware. However, it is
for the price of no angle compensation between subse-
quent frames. Another problem is Kalman filtering -
it is unable to distinct between high jitter and sudden
intended motion, which results into delayed reaction
to compensate sudden change of position.

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018

G
FL

O
P

S

Year

Peak double precision GFLOPS

GPU CPU

Figure 1. Development and prediction of CPU and
GPU computing power.

2. GPGPU acceleration
The general purpose graphic processing units (GPG-
PUs) are phenomenon of the last decade. Their raw
power greatly outperforms those of CPUs due to the
use of hundreds of simple computing cores (see Fig-
ure 1). Yet, GPU is still an accelerator connected
through peripheral component interconnect express
bus (PCI-E) and requires host processor (CPU) for
work scheduling.

Further, the use of GPU brings multiple issues –
beside slow access to GPU memory (about 700 clock
cycles), it is also branching sensitivity. This is a hard-
ware limitation (compromise between speed and uni-
versality). For this reason, executing threads are orga-
nized into groups of 32, called warps [18]. As a result,
threads in the same warp should all take the same
branch, otherwise performance penalty will occur –
threads execution will be serialized [18] [19].

Therefore, the video stabilization is an ideal task
for GPGPU, as the same set of operations can be per-
formed in parallel on all pixels of image. However, in
order to provide huge performance speedup over CPU,
the algoithm must be properly designed. Otherwise, it
may not be faster than CPU.

2.1 CUDA framework
The CUDA is a proprietary framework developed by
NVIDIA which specializes in graphics cards devel-
opment. It works only with NVIDIA GPUs. Main
features of current version 7.5 are: unified memory
between host and device, libraries for GPU code, new
work spawning from within GPU code or C++11 fea-
tures like lambdas or auto type specifiers. All CUDA
versions are backward compatible, forward compatibil-
ity is guaranteed on binary level. Yet, the new features
are often limited to new hardware [20] [21] [22] [23].

Further, a great collection of powerful tools and
libraries exists [24]: advanced debugger and profiler or
official free libraries (e.g. image processing primitives,
Standard Template Library equivalent).



3. Proposed method for GPGPU video
stabilization

In order to stabilize video, a correspondence between
each pair of consecutive frames must be found. The
accuracy of this step is crucial to the successful video
stabilization. In proposed method, this is achieved
using binarization approach. The second, but also
important step is motion filtering – the intended camera
motion should be preserved, while jitter should be
removed. This is achieved by Kalman filtering.

However, before proceeding, the worst case sce-
nario of video that should be successfully stabilized
and desired properties must be defined:

• Shaking up to the frequency of 15 Hz.
• FullHD input resolution.
• 30 frames per second.
• Real-time processing.

3.1 Areas of concern selection

Figure 2. Input frame with marked areas of interest.
In order to both speed up computation and to en-

hance motion estimation, we decided to split each
frame into eight areas of concern (SSWs) around its
edges (See Figure 2). The center square is not con-
sidered, as typically an object of interest is present in
the central part of each frame. This is optimization for
both lowering required computational power and to
improve estimation of local and global motion vectors
(object of interest can perform movement independent
of camera’s movement). If not considered, this would
bring unwanted error to global motion vector. SSWs
have rectangular shape proportional to the resolution
of input frame. Because of the nature of jitter [25] and
assuming that the input video has at least 30 frames
per second, the distance from the frame’s edge can be
5 % of resolution or less even for high focal lengths
(e.g. F = 600 mm). The size of matching sub-windows
must be small enough to bring significant savings in re-
quired power and big enough to have sufficient amount
of details for searching in SSWs of the previous frame.
Therefore, size of the MSWs is 50 % of the SSWs size.

The size of single SSW is 20 % of the frame resolution.
This together with 5 % distance from the edges leaves
a total of 40 % of unused space (each gap between two
SSWs is 15 % of resolution big). However, the real
dimensions can be adjusted based on the estimated
maximal variation in each axis that should be prop-
erly stabilized (e.g. if movement is expected in only
one of axes, the SSWs can be adjusted accordingly).
This brings trade-off between speed and accuracy of
stabilization.

Figure 3. Detail of top left area of interest from
Figure 2.

However, in order to speed up GPU computation
(to overcome limitations discussed in Section 2), a
coalesced access to GPU’s memory must be ensured.
Therefore, matching sub-windows’s dimensions must
be rounded to the multiple of 64. This also applies to
searching sub-windows: their dimensions must be up-
dated to the double of those of matching sub-windows.

3.2 Areas of concern processing
After the previous step, eight areas of concern exist.
However, adjustments must be made in order to further
lower the computation requirements. This is achieved
by converting each area of full-bit frame into binary
image by local binary pattern (LBP) in order to enable
template matching by simple XOR operation. How-
ever, conversion to binary image itself is tricky – a high
level of detail must be preserved after binarization step
(traditional methods tend to convert similar colors into
the same binary value and therefore omit some slight
contrast changes which can be considered as edges).
For this, LBP binarization proposed by [17], which
solves this issue, is used: each pixel of input image is
compared against P equally spaced reference pixels
(points) forming a circle of a radius R. Output value
for each pixel of the output image is then computed:

B(P,R)(i, j) =

1 i f
P−1

∑
p=0

sign(I(p)− I(i, j))≥ bP/2c

0 otherwise
(1)



and

sign(x) =
{

1 x≥ 0
0 otherwise (2)

where P is the count of reference points, R is their
radius, (i, j) is the coordinate of currently processed
pixel, p is the coordinate of current reference point,
I is the function returning image’s intensity value for
given coordinate and bxc denotes the largest integer
not greater than x.

Figure 4. Searching sub-window area from Figure 3.
LBP Binarization [17] successfully preserves edges of
blurred image.

This approach reduces the maximum number of
comparisons and additions to obtain pixel value to
P. The performance of this method can be seen in
Figure 4.

3.3 Local motion estimation
After the preprocessing step, local motion estimation
can take place. Firstly, matching sub-windows must
be extracted from the binarized areas. After that, com-
parison of all MSWs of current frame with the cor-
responding SSWs of previous frame is performed by
computing number of non-matching point criteria for
each possible displacement [17]:

NNMP(dx,dy) =
M−1

∑
i=0

N−1

∑
j=0
{Bt(i, j)⊕Bt−1(i+dx, j+dy)}

(3)

and
− s≤ (dx,dy)≤ s (4)

where (dx,dy) is the candidate displacement of the
matching sub-window in the searching sub-window,
N is the MSW’s dimension (N×N), Bt is MSW of
current frame, B(t−1) denotes SSW of previous frame,
⊕ represents Boolean operation XOR and s is half
of the difference of the matching sub-windows and
searching sub-windows dimensions.

This results into eight matrices of NNMP values,
where each value’s index denotes (dx,dy). From each
list, the eight lowest values are taken and their coor-
dinates become the local motion vectors. This is an

improvement suggested by [1] in order to enable stabi-
lization of frames without clear edges (e.g. desert, sea,
snow). This gives in total of 64 LMVs vectors.

3.4 Global motion estimation and filtering
Global motion vector (GMV) is computed for each
frame as a median of all 64 LMVs:

GMVd = median{LMVi(d))}, i = 1,2, ...,64 (5)

where d is the direction vector for x and y axes (d∈(x,y))
This filtration effectively removes LMVs, into which

an error was introduced by object of interest movement
extended into the searching sub-windows.

However, in order to preserve intended movement
of camera, another filtering is needed: Typical shaky
video consist of both intended motion and unwanted
motion (shaking). This two motions have different
properties: Shaking typically consist of fast, high
frequency random changes of position (e.g. in case
of hand-held camera, typical frequency is up to 20
Hz [25]). This is filtered out by four dimensional
Kalman filter - current frame stabilized location (x and
y) is used as a measurement for Kalman filter which
yields new estimated position. Then, current frame
location is compensated by difference between esti-
mated and real position. This process achieves effec-
tive smoothing of camera path, where intended camera
motion is preserved and shakiness discarded.

3.5 Motion compensation
The last step in digital image stabilization is the move-
ment of image frames into final form of stabilized out-
put. Because one of the requirements is possibility of
real-time usage, a standard form of DIS is chosen. This
consists of placing of current frame into black back-
ground on corresponding location. As a consequence,
stabilized video contains disturbing black edges. In
order do prevent this disturbances, a reduction of out-
put resolution can be performed using windowing: a
window with resolution lower by MSW size than that
of the input video is placed into the center of each sta-
bilized frame and non-overlapping parts are discarded.

Figure 5. Comparison of compensated frame (left)
and windowed frame (right).



4. Experiments
The proposed method was tested using hardware listed
in Table 1. As can be seen, used hardware is fairy old
and with mediocre performance.

Table 1. Used hardware

Component Type Speed

CPU Intel Core 2 Quad 6600 3.22 GHz
RAM 6 GB 1066 MHz
GPU NVIDIA GTX 560Ti-448 930 MHz

1.28 GB 2.20 GHz

For testing of proposed algorithm, four video se-
quences were created. An overview of their common
measurable properties is in Table 2. Each sequence
incorporates different situation and movement:

”walking” This video sequence was created by hand-
held compact camera during walking through
hall with bad luminance conditions. Therefore,
it contains blurry frames and changing paral-
laxes.

”car-ride” This video sequence was recorded from
camera mounted inside car. Shooting was per-
formed during sunny weather. However, video
contains focus changes between infinity and in-
terior and rapid shaking caused by car going
through potholes.

Table 2. Testing video-sequences and their properties

Video name Resolution FPS

walking 1280×720 30
car-ride 1280×720 30
object-tracking 1920×1080 60
pan&zoom 1920×1080 60

”object-tracking” This video sequence is shot with
hand-held camera with F = 500 mm. It tracks
movement of distant object during good light
conditions.

”pan&zoom” This video sequence is also shot with
hand-held camera. However, this time with the
”panorama” effect (smooth position changes)
and big zoom changes.

Each video sequence was stabilized using pro-
posed method. A total of 5 different sizes of matching
sub-windows was used in order to check its suitability
for real-time processing. In this case, real-time pro-
cessing refers to the ability to stabilize video sequence
at least at the speed of 24 FPS (frames per second),
which is the international standard speed used in many
video cameras. The measured results are in Table 3. As

can be seen, used GPU can process in real-time MSWs
with resolution of 96×96 px, while there is still time
left for further processing. This windows sizes enables
processing of HD video with no problems and process-
ing of FullHD video with lower amount of jitter. With
age and performance of the used hardware, this can be
considered as a great result. Also, it can be assumed,
that use of newer, more powerful hardware will enable
real-time use even for bigger MSW sizes.

Further, the proposed method performance was
compared with CUDA video stabilization method im-
plemented in OpenCV libraries [26]. The processing
speed achieved 29.9 FPS (33.5 ms) for video reso-
lution of 1280×720 px and 22.1 FPS (45.2 ms) for
video resolution of 1920×1080 px, which is slower
than the proposed method. OpenCV’s method enables
real-time stabilization of HD video with some space
left for further processing. However, for FullHD video,
real-time stabilization itself is not possible. The lower
processing speed is due to the fact, that, OpenCV’s
method compensates also inter-frame rotation and uses
image inpaiting to remove black edges.

-100

-50

0

50

100

150

200

1

1
7

3
3

4
9

6
5

8
1

9
7

1
1

3

1
2

9

1
4

5

1
6

1

1
7

7

1
9

3

2
0

9

2
2

5

2
4

1

2
5

7

2
7

3

2
8

9

3
0

5

3
2

1

3
3

7

3
5

3

3
6

9

3
8

5

4
0

1

4
1

7

4
3

3

4
4

9

4
6

5

4
8

1

4
9

7

y 
[p

x]

frame [-]

Camera path in y axis for car-ride video

Actual camera path in y axis Filtered camera path in y axis

Figure 6. Motion filtration results for the ”car-ride”
video sequence: actual and filtered path of the camera
motion in y axis. The filtered motion is smooth and
sensitivity to the sudden short position changes
declines with time.

In theory, processing speed declines quadratically
with rising dimensions of matching window (this is
due to the correlation complexity of O(n2)). However,
the testing shows, that real penalty of dimensions dou-
bling is slightly smaller. This is due to the fact, that
correlation with smaller search window resolutions is
not demanding enough to fully utilize GPU.

The quality of jitter filtering and intended camera
motion preservation was firstly compared with results
of method available in OpenCV [26] (see table 4).
For this reason, the inter-frame transformation fidelity
metrics (ITF) [27] was implemented:

IT F =
1

N f −1

N f−1

∑
k=1

PSNR(k) (6)



Table 3. Relationship between matching sub-window
(MSW) size and frame processing speed

MSW Resolution FPS Processing speed [ms]

64×64 188.2 5.3
128×64 80.0 12.5
96×96 31.7 31.5

128×128 23.0 43.5
192×96 19.0 52.6

Table 4. Stabilization quality comparison of proposed
method with method implemented in OpenCV
library [26].

Video name Original Proposed Method in [26]
ITF [dB] ITF [dB] ITF [dB]

walking 21.0 22.3 21.5
car-ride 27.7 28.9 28.0
object-tracking 21.1 21.5 22.2
pan&zoom 20.6 25.3 24.2

where N f is the number of video frames and

PSNR(k) = 10log10
I pmax

MSE(k)
(7)

is the peak signal-to-noise ratio between two consecu-
tive frames, where

MSE(k) =
1

M×N

M−1

∑
i=0

N−1

∑
j=0
‖Fk(i, j)−Fk−1(i, j)‖2

(8)
is the mean square error between monochromatic im-
ages with dimensions of M×N, I pmax is the maximum
possible pixel intensity in the frame and Fk is the k-th
frame from sequence.

As can be seen, the proposed method slightly out-
performs method from [26] in three video sequences
(except the pan&zoom sequence). However, subjective
visual comparison with method implemented in [26]
has shown, that despite the nearly the same ITF values,
proposed method better compensates high frequency
jitter (see [28]). Further, the difference between stabi-
lized and shaky video sequences is subjectively much
greater than is show by ITF metrics. Therefore, it
can be concluded, that this metrics is not suitable for
video sequences containing changes of camera posi-
tion and/or tracked object position.

Next, video stabilization quality was further evalu-
ated both visually and using discrete Fourier transform
to analyze present frequencies. The visual comparison
of real and filtered motion can be seen in Figures 6
and 7. It is obvious, that in case of low jitter in the

”car-ride” video sequence, the filtering is excellent.

However, in ”walking” video sequence, filtered mo-
tion fails to straighten the camera path and as a conse-
quence, it is dangling. Therefore, in order to address
this issue, further research is required to enhance used
Kalman filtering.

-300

-200

-100

0

100

200

1

1
7

3
3

4
9

6
5

8
1

9
7

1
1

3

1
2

9

1
4

5

1
6

1

1
7

7

1
9

3

2
0

9

2
2

5

2
4

1

2
5

7

2
7

3

2
8

9

3
0

5

3
2

1

3
3

7

3
5

3

3
6

9

3
8

5

4
0

1

4
1

7

4
3

3

4
4

9

4
6

5

4
8

1

4
9

7

x 
[p

x]

frame [-]

Camera path in x axis for handheld camera during 
walking

Actual camera path in x axis filtered camera path in x axis

Figure 7. Motion filtration results for the ”walking”
video sequence: actual and filtered path of the camera
motion in x axis. The filtered motion is smooth, but
Kalman filtering fails to straighten motion caused by
walking.

The analysis of frequency components for y axis
of walking video sequence is shown in Figure 8. As
can be seen, unfiltered motion contains a high amount
of frequency changes around 1 Hz and 2 Hz. Beside
those peaks, a lot of other, higher frequencies is present.
However, the filtration successfully removes jitter and
only low frequencies representing intended camera
motion are preserved. Filtrated motion contains high
amount of no motion, few smooth motions up to 1 Hz
and very low amount of other frequencies. Therefore,
proposed video stabilization method can be considered
as an excellent.

5. Conclusions
In this paper, a new method for real-time video stabi-
lization empowering the power of GPGPU was pro-
posed. In order to achieve real-time stabilization of
HD video sequences, eight areas of interest distributed
regularly around the frame edges were selected. They
were further processed using fast LBP image bina-
rization technique. This enabled fast correspondence
search between two consecutive frames using simple
XOR during correlation. The selection of optimal sta-
bilization path was achieved using 64 best responses
of correlation (8 responses for each area of interest),
from which median value was selected for each axis.
The desired shift to compensate displacement between
following video frames was corrected using Kalman
filtering. This enabled to preserve intended camera
motion. Algorithm itself was implemented using the
CUDA API.

For the testing purposes, four HD video sequences



0

20000

40000

60000

80000

100000

120000

140000

0 2 4 6 8 10 12 14 16

R
ea

l^
2

f [Hz]

Frequency components in y axis for video sequence 
"walking" before stabilization

(a)

0

10000

20000

30000

40000

50000

60000

70000

80000

0 2 4 6 8 10 12 14 16

R
ea

l^
2

f [Hz]

Frequency components in y axis for video sequence 
"walking" after stabilization

(b)

Figure 8. Frequency analysis of the y axis path for
”walking” video sequence: before motion filtration (a)
and after motion filtration (b). Stabilization
successfully removed unwanted motion of higher
frequencies.

were created. They were processed using different
sizes of search windows, which is the trade-off be-
tween the speed and accuracy of stabilization (low
search window dimensions can cause improper stabi-
lization in case of sudden and distant pose change).
Test results on the used hardware shown, that real-time
processing (24 FPS) is possible for search window
sizes up to 192×192 px (the dimensions of matching
template are half of search window dimensions; see
Table 3 for detailed results). This enables successful
real-time stabilization of both HD and FullHD video.
Based on the used hardware (see Table 1) and its per-
formance, it can be assumed that use of more current
(and more powerful) hardware would enable real-time
processing even for bigger search windows sizes. The
quality of stabilization itself was evaluated using ITF
metrics [27], when inter-frame difference is measured.
Also, proposed method was compared with method
implemented in [26] using the same hardware. This
method was greatly outperformed by proposed method
in terms of speed and slightly in terms of achieved ITF.
Next, visual comparison of camera path before and
after Kalman filtering was performed (see Figures 6
and 7). The results can be evaluated as good, because
corrected camera path had smooth proceedings. How-
ever, further improvements can be achieved, as Kalman

filtering fails to quickly respond to the sudden intended
changes of camera pose and to straighten dangling mo-
tion of low frequency. The third evaluation method
was done by frequency analysis of the camera path
before and after stabilization (see Figure 8). Their
comparison shows, that prior to the stabilization, fre-
quency peaks were present over the whole spectrum
with occasional peaks at certain frequencies. However,
they were successfully removed by Kalman filtering
and only desired motion with frequencies lower than 2
Hz was preserved.

These tests has shown, that use of GPGPU brings
great performance gain and enables real-time video
stabilization even on a fairly average hardware. Also,
despite the simplicity of the method, the quality of
video stabilization is excellent.

However, in order to use proposed method in real-
life applications, further research is required. This
concerns mainly filtering of unwanted motion, where
Kalman filter is not sufficient and some kind of hybrid
technique is required. Also, in some applications, it
might by suitable to incorporate rotation angle com-
pensation.

References
[1] M. Drahansky, F. Orsag, and P. Hanacek. Ac-

celerometer based digital video stabilization for
general security surveillance systems. Interna-
tional Journal of Security and Its Applications,
1(1):10, 2010.

[2] S. Mittal and J. S. Vetter. A survey of methods for
analyzing and improving gpu energy efficiency.
ACM Comput. Surv. 47, 2(19):23, July 2014.

[3] E. Monteiro, B. Vizzotto, C. Diniz, B. Zatt, and
S. Bampi. Applying cuda architecture to acceler-
ate full search block matching algorithm for high
performance motion estimation in video encod-
ing. IEEE International Symposium on Computer
Architecture and High Performance, pages 128–
135, 2011.

[4] S. Kumar, H. Azartash, M. Biswas, and
T. Nguyen. Real-time affine global motion esti-
mation using phase correlation and its application
for digital image stabilization. IEEE Transac-
tions on Image Processing, 20(12):3406–3418,
December 2011.

[5] S. W. Kim, S. Yin, K. Yun, and J. Y. Choi. Spatio-
temporal weighting in local patches for direct
estimation of camera motion in video stabiliza-
tion. Computer Vision and Image Understanding,
118:71–83, January 2014.



[6] M. Grundmann, V. Kwatra, and I. Essa. Auto-
directed video stabilization with robust l1 optimal
camera paths. IEEE International Conference on
Computer Vision and Pattern Recognition, pages
225–232, 2011.

[7] M. Okade and P. K. Biswas. Video stabilization
using maximally stable extremal region features.
Multimedia Tools and Applications, 68(3):947–
968, February 2014.

[8] F. Liu, M. Gleicher, H.-L. Jin, and A. Agarwala.
Content preserving warps for 3d video stabiliza-
tion. ACM Transactions on Graphics, 28(3):1–9,
2009.

[9] M. J. Tanakian, M. Rezaei, and F. Mohanna. Real-
time video stabilization by adaptive fuzzy filter-
ing. International Conference on Computer and
Knowledge Engineering, pages 126–131, 2011.

[10] Z. H. Zhou, H. L. Jin, and Y. Ma. Plane-based
content preserving warps for video stabilization.
IEEE international conference on Computer Vi-
sion and Pattern Recognition, pages 2299–2306,
2013.

[11] K. Ohyu, S. Jeongho, and P. Joonki. Video sta-
bilization using kalman filter and phase correla-
tion matching. Image Analysis and Recognition,
pages 141–148, 2005.

[12] A. Litvin, J. Konrad, and V. C. Karl. Probabilistic
video stabilization using kalman filtering and mo-
saicking. SPIE Symposium on Image and Video
Communications and Processing, pages 663–674,
2003.

[13] Y. G. Ryu and M. J. Chung. Robust online dig-
ital image stabilization based on point-feature
trajectory without accumulative global motion
estimation. IEEE SIGNAL PROCESSING LET-
TERS, 19(4):223–226, 2012.

[14] C. T. Wang, J. H. Kim, K. Y. Byun, J. Q. Ni,
and S. J. Ko. Robust digital image stabilization
using the kalman filter. IEEE Transactions on
Consumer Electronics, 55(1):6–14, 2009.

[15] C. H. Song, H. Hai, W. Jing, and H. B. Zhu. Ro-
bust video stabilization based on particle filtering
with weighted feature points. IEEE Transactions
on Consumer Electronics, 58(2):570–577, 2012.

[16] J. Yang, D. Schonfeld, and M. Mohamed. Robust
video stabilization based on particle filter track-
ing of projected camera motion. IEEE Transac-
tions on Circuits and Systems for Video Technol-
ogy, 19(7):945–954, 2009.

[17] B. Kir, M. Kurt, and O. Urhan. Local binary pat-
tern based fast digital image stabilization. Signal
Processing Letters, 3(22):341–345, 2015.

[18] NVIDIA. Cuda c best practices guide, September
2015. http://docs.nvidia.com/cuda/
cuda-c-best-practices-guide/
index.htm.

[19] AMD. Amd accelerated parallel process-
ing - opencl programming guide, November
2013. http://developer.amd.com/
wordpress/media/2013/07/AMD_
Accelerated_Parallel_Processing_
OpenCL_Programming_Guide-rev-2.
7.pdf.

[20] NVIDIA. Cuda 4.0, 2011. http:
//developer.download.nvidia.com/
compute/cuda/4_0/CUDA_Toolkit_4.
0_Overview.pdf.

[21] NVIDIA. Cuda 5.0, 2012. http:
//on-demand.gputechconf.
com/gtc/2012/presentations/
SS104-CUDA-5-What’s-New.pdf.

[22] NVIDIA. Cuda 6.0, April
2014. http://devblogs.
nvidia.com/parallelforall/
powerful-new-features-cuda-6/.

[23] NVIDIA. Cuda 7.0, January
2015. http://devblogs.
nvidia.com/parallelforall/
cuda-7-feature-overview/.

[24] NVIDIA. Cuda tools and ecosystem.
https://developer.nvidia.com/
cuda-tools-ecosystem.

[25] F. L. Rosa, M. C. Virzi, F. Bonaccorso, and
M. Branciforte. Optical image stabilization.

[26] OpenCV. Video stabilization, December 2015.
http://docs.opencv.org/trunk/d5/
d50/group__videostab.html#gsc.
tab=0.

[27] J. Xu, H. W. Chang, S. Yang, and M. Wang. Fast
feature-based video stabilization without accu-
mulative global motion estimation. IEEE Trans-
actions on Consumer Electronics, 58(3):993–
999, 2012.

[28] Pacura, D. Car-ride cuda video stabiliza-
tion comparison with opencv implementa-
tion, March 2016. https://youtu.be/
Z5FDnbTbfSE.

http://docs.nvidia.com/cuda/cuda-c-best-practices-guide/index.htm
http://docs.nvidia.com/cuda/cuda-c-best-practices-guide/index.htm
http://docs.nvidia.com/cuda/cuda-c-best-practices-guide/index.htm
http://developer.amd.com/wordpress/media/2013/07/AMD_Accelerated_Parallel_Processing_OpenCL_Programming_Guide-rev-2.7.pdf
http://developer.amd.com/wordpress/media/2013/07/AMD_Accelerated_Parallel_Processing_OpenCL_Programming_Guide-rev-2.7.pdf
http://developer.amd.com/wordpress/media/2013/07/AMD_Accelerated_Parallel_Processing_OpenCL_Programming_Guide-rev-2.7.pdf
http://developer.amd.com/wordpress/media/2013/07/AMD_Accelerated_Parallel_Processing_OpenCL_Programming_Guide-rev-2.7.pdf
http://developer.amd.com/wordpress/media/2013/07/AMD_Accelerated_Parallel_Processing_OpenCL_Programming_Guide-rev-2.7.pdf
http://developer.download.nvidia.com/compute/cuda/4_0/CUDA_Toolkit_4.0_Overview.pdf
http://developer.download.nvidia.com/compute/cuda/4_0/CUDA_Toolkit_4.0_Overview.pdf
http://developer.download.nvidia.com/compute/cuda/4_0/CUDA_Toolkit_4.0_Overview.pdf
http://developer.download.nvidia.com/compute/cuda/4_0/CUDA_Toolkit_4.0_Overview.pdf
http://on-demand.gputechconf.com/gtc/2012/presentations/SS104-CUDA-5-What's-New.pdf
http://on-demand.gputechconf.com/gtc/2012/presentations/SS104-CUDA-5-What's-New.pdf
http://on-demand.gputechconf.com/gtc/2012/presentations/SS104-CUDA-5-What's-New.pdf
http://on-demand.gputechconf.com/gtc/2012/presentations/SS104-CUDA-5-What's-New.pdf
http://devblogs.nvidia.com/parallelforall/powerful-new-features-cuda-6/
http://devblogs.nvidia.com/parallelforall/powerful-new-features-cuda-6/
http://devblogs.nvidia.com/parallelforall/powerful-new-features-cuda-6/
http://devblogs.nvidia.com/parallelforall/cuda-7-feature-overview/
http://devblogs.nvidia.com/parallelforall/cuda-7-feature-overview/
http://devblogs.nvidia.com/parallelforall/cuda-7-feature-overview/
https://developer.nvidia.com/cuda-tools-ecosystem
https://developer.nvidia.com/cuda-tools-ecosystem
http://docs.opencv.org/trunk/d5/d50/group__videostab.html#gsc.tab=0
http://docs.opencv.org/trunk/d5/d50/group__videostab.html#gsc.tab=0
http://docs.opencv.org/trunk/d5/d50/group__videostab.html#gsc.tab=0
https://youtu.be/Z5FDnbTbfSE
https://youtu.be/Z5FDnbTbfSE

	Introduction
	GPGPU acceleration
	Proposed method for GPGPU video stabilization
	Experiments
	Conclusions
	References

