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Abstract

Software framework Data Plane Development Kit provides a standard API for fast packet processing
in the user space. The DPDK covers multiple devices and architectures from different vendors. The
CESNET association develops the family of COMBO network cards that are able to process traffic
up to 100 Gb/s through their proprietary SZE2 interface. This paper describes how the SZE2 library
can be used as a backend for the DPDK. This connection enables receiving and transmitting data
through the COMBO network cards in a more standard way. The SZEZ2 library is utilized to create a
user space Poll Mode Driver for the DPDK and it has already become part of the DPDK mainline in
the version 2.2.0 (December 2015). The correct positioning of packets in DPDK message buffers
and SZE2 buffers is accomplished by copying data between buffer memories. The performance
benchmarks has shown that the COMBO-100G network card can receive and transmit over 140
millions of 64 B long Ethernet frames per second unidirectionally and a single port can handle up to
134 millions of 64 B long frames per second in the bidirectional traffic using multiple CPU cores.

Keywords: DPDK — COMBO Network Card — COMBO-100G — SZE2 — libsze2 — 100Gb/s

Ethernet
Supplementary Material: N/A

*xvidom00@stud.fit.vutbr.cz, Faculty of Information Technology, Brno University of Technology

The integral part of any traffic monitoring and analysis
in current networking systems is the wirespeed packet
capture. The IEEE 802.3ba-2010 standard for 40 Gb/s
and 100 Gb/s Ethernet brings new challenges for the
packet processing. At the link layer of the Ethernet
protocol, the shortest packet is 64 B long. Transmis-
sion of such frame requires 84 B at the physical layer
(additional 7 B for preamble, 1 B for start of frame
delimiter, and 12 B for interpacket gap). The 100 Gb/s
Ethernet can transfer 148,8 millions of packets per sec-
ond (pps). To capture and analyse data at the 100 Gb/s
wirespeed, the processor with a single core has to pro-
cess one packet in 6,72 ns (i. e. 20 cycles on a CPU
with the frequency of 3 GHz).

User space applications in the Linux-based oper-
ating system can process network data using sockets
API and the packet capture library. Data transferred
by these facilities are passed through the kernel net-
working stack which is too slow for the current needs
and can hardly accommodate speeds up to 10 Gb/s.
Therefore, frameworks which bypass the kernel and
move the processing from the kernel space to the user
space were developed such as Data Plane Develop-
ment Kit (DPDK) [1], netmap [2], PF_RING [3] and
OpenOnload [4]. These solutions support multiple op-
erating systems and various hardware. Comparison
of the frameworks is out of scope this paper and can
be found in papers by Gallenmiiller and others [5, 6].
Besides that, the CESNET association develops the
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network cards COMBO which can transfer data to the
user space through a proprietary interface SZE2 which
is introduced and discussed in detail in the master’s
thesis by Jifi Slaby [7] and Andrej Hank [8]. This
paper describes interconnection of the SZE2 interface
with the DPDK in order to build applications for the
COMBO network cards using a more widespread API.

The DPDK consists of multiple drivers and li-
braries for packet processing which can be done purely
in the user space. The drivers might require a kernel
module to control communication with network card
through the PCI-Express bus and access the card reg-
isters. Packet data is transferred from a network card
through the direct memory access (DMA) transfers
and stored in a DPDK-specific message buffer (mbuf).
The mbuf allows an easy manipulation with packets
without a need of the additional memory copies when
the packet is being processed by an application. More
background on DPDK is described in section 2. The
software side of the SZE2 interface consists of ker-
nel modules and the user space libsze?2 library. Data
are transferred through the DMA transfers to a buffer
structure consisting of several larger memory areas.
This structure is referred as circular buffer in the fur-
ther text and described in section 3. The packet data
from multiple packets are aggregated into a continuous
memory space. The transfer of consecutive packets re-
quires less PCI-Express transactions than in case of the
way used by DPDK. On the other hand manipulation
with packets coming from the SZE2 interface is more
limited. The SZE2 interface principles are mentioned
in section 3.

This paper is focused on the implementation of
a DPDK driver szedata2 for COMBO network cards.
The driver hides the libsze2 behind the DPDK API. On
the receive side, data is copied from the SZE2 circular
buffer to the mbuf memory, vice-versa for the transmit
side. Section 4 describes the szedata?2 DPDK driver
in detail. Section 5 provides the performance results
obtained from benchmarks.

The DPDK driver szedata2 enables creating appli-
cations on top of the COMBO network cards using
the DPDK API. This setup scales up to 8 CPU cores
and allows to utilize up to 100 Gb/s of the Ethernet
bandwidth in unidirectional reception, 94 Gb/s in uni-
directional transmission and 90 Gb/s in bidirectional
traffic with the shortest packets.

This section provides basic information about the DPDK
and its principles that are essential for reaching the
high performance. Detailed information can be ob-

tained from the DPDK Programmer’s Guide [9].

The DPDK supports multiple CPU architectures:
Intel x86, IBM Power 8, EZchip TILE-Gx, ARM [1].
It contains drivers for various network cards from dif-
ferent vendors.

The Environment Abstraction Layer (EAL) is a
DPDK core library which encapsulates architecture
and system specifics. The EAL manages access to
hardware resources and memory. The DPDK uses
huge pages Translation Lookaside Buffers (TLB) sup-
port. Huge pages reduce TLB miss rates. The EAL
controls allocation of memory from huge pages and al-
location of continuous physical memory blocks (called
memzones) that are used for DMA transfers.

Packets in DPDK are stored in mbufs. The mbufs
are allocated from DPDK memory pools (called mem-
pool) which manage lockless queues of fixed-sized ob-
jects and ensure suitable distribution of mbufs through
memory channels. The structure for mbuf metadata
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Figure 1. The structure of mbuf for storing packets.

occupies two cache lines. Frequently used items are
located in the first cache line. Packet data are stored in
the fixed-sized area after the metadata. There is a free
space called headroom between the start of buffer for
packet data and data itself (Figure 1). The headroom
can be used for prepending data to a packet. If a packet
is larger than the buffer for packet data mbufs can be
chained through their next field (Figure 2). The DPDK
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Figure 2. Packet data spread into multiple chained
mbufs.
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provides a mechanism of so-called direct and indi-
rect mbufs. An indirect mbuf does not contain actual
packet data in its buffer but instead it points to data of
its associated direct mbuf. Mbufs are designed so that
there is no need to copy memory among buffers. The
indirect mbufs can be used to duplicate packets without
copying. Packet data are transferred between the host
memory and the network card through DMA trans-



fers. The DPDK drivers only fill the DMA descriptors
with the physical memory addresses and lengths of
the actual packet data. This approach does not allow
to fully utilize the bandwidth of the PCI-Express bus
as each packet is transferred in a seperate transaction
unlike in case of SZE2 interface (described in section
3). However, the main advantage of the single packet
per transaction principle is a greater flexibility with the
packet manipulation.

The drivers for network devices in the DPDK work
in polling mode so that the interrupt overhead is avoided.
Therefore they are called Poll Mode Drivers (PMD).
The PMD has to implement functions for receiving,
transmitting packets, initialization and configuration
of device. Besides that, the DPDK Ethernet Device
API enables management of a device, filtering, infor-
mation and statistics displaying. The functions are
available through function callbacks exported by the
drivers. Drivers do not need to support all functions.
The pointers for unsupported functions are set to NULL
and Ethernet Device API takes care of the rest. Func-
tions for receiving and sending packets transfer bursts
of packets to reduce the function call overhead per
packet. The size of the burst is adjustable. Note that
the higher burst sizes increase the latency. Functions
exported by the DPDK drivers are lockless therefore
multiple cores cannot poll the same queue from certain
port.

This section aims on the COMBO network cards [10]
and the SZE?2 interface.

The COMBO network cards family is based on
Field Programmable Gate Array (FPGA) technology.
The last generation - COMBOV3 (specifically COMBO-
100G and COMBO-80G) cards are connected to the
host system with the PCI-Express 3.0 bus. The COMBO
network cards are designed for hardware acceleration
of network data processing. The FPGA chip on each
board allows flexible changing the card’s functionality
by loading a new firmware to the chip.

The COMBO network cards are managed by a
set of proprietary kernel modules divided into multi-
ple layers. The lowest layer implements operations
specific for a group of COMBOV3 cards and it is in-
tended to hide differencies between multiple COMBO
cards generations. The middle layer kernel module
encapsulates the hardware specifics by providing in-
terface for application drivers. The application driver
szedata2 controls DMA transfers among a host system
and COMBO cards. User space applications receive
and transmit data through the circular buffer mapped

to user space. The libsze2 library encapsulates the
szedata?2 kernel module interface and provides API for
user space applications.

From the firmware perspective, the DMA transfers
are managed by a DMA controller located in the FPGA
firmware and a pair of buffers (one in the host system
and one in the network card). Each buffer has a start-of-
data and an end-of-data pointer. The DMA controller
manages the transfers based on values of these pointers.
Each direction is associated to one or more dedicated
DMA channels. Each channel has its own buffers. The
number of channels varies among different firmwares.

The size of the circular buffer in the host system
memory reaches dozens of megabytes. The buffer (Fig-
ure 3) is composed of several memory blocks aligned
to 4 kB boundaries which take multiple memory pages
(referred as data blocks in the further text). Each data
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Figure 3. SZE2 circular buffer is composed of data
blocks and block with descriptors.

block is described by a 64-bit descriptor which con-
tains an upper non-zero part of the address of the data
block and a number of pages in the block. The de-
scriptors are grouped into a dedicated memory block
(referred as descriptors block). The last descriptor lo-
cated in the descriptors block does not point to the
data block but to the start of the descriptors block. The
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Figure 4. Detail of a SZE2 segment placed at the
border of two data blocks.



descriptor pointing to the descriptors block is distin-
guished from descriptors pointing to the data blocks
by the least significant bit.

The SZE2 interface was originally designed uni-
versally to transfer different types of data through the
PCI-Express. In the other words, it is not limited only
to the network packets. The SZE2 interface works
with segments of data that have variable size consist-
ing of a header and data. The header contains a size
of the whole segment including header, size of the
header part and metadata related to an accelerating
core. Both the header and data parts are aligned to 8
bytes (Figure 4).

The szedata2 PMD encapsulates the SZE2 interface
for the DPDK environment.

The initial version of the szedata2 PMD supports
only those functions which are necessary for starting,
stopping the device and functions for reception and
transmission.

Data transferred through the PCI-Express bus are
divided into transaction layer packets (TLP) which
consist of a header and a payload. The maximal size
of the payload for a single TLP is 256 B. A better
utilization of the bus bandwidth is achieved by sending
longer payloads at once.

Many original DPDK drivers transfer packets us-
ing descriptors. Each descriptor is associated with a
physical address of an mbuf’s payload and can transfer
a single packet (except jumbo frames that are scattered
around multiple mbufs). This approach is inconvenient
for short packets as it increases the overhead of the
PCI-Express TLPs as the TLPs with shorter payloads
are used.

The SZE2 interface does not use descriptors to
transfer separate packets through DMA like other net-
work cards. SZE2 segments are placed continuously
one by one into buffer composed of large blocks. Such
organization allows to reduce the overhead of the PCI-
Express TLPs, especially for short packets by aggre-
gating them in common TLPs with longer payloads.
On the other hand, the SZE2 approach is suitable only
for a specific class of applications. The SZE2 ap-
proach complicates the situation for applications that
defer processing of certain packets. This can lead to a
higher memory fragmentation as there might be only
few packets in a single memory block which need a
deferred processing. Such packets block to reuse the
whole data block full of other uninteresting packets.
Therefore to support DPDK applications without re-
strictions, the received packets are copied from the
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Figure 5. Structure of DPDK applications built over
COMBOV3 network card.

SZE2 circular buffer into mbufs and packets that are
going to be transmitted are copied in the opposite di-
rection.

The initial version of the szedata2 PMD has be-
come a part of the DPDK mainline since the release
2.2.0. The code is located in /drivers/net/szedata?2 di-
rectory of the DPDK tree. The DPDK release 2.2.0
with the szedata2 PMD code can be downloaded from
the Download section of the DPDK project website'.
The code from the current git master branch is also
accessible for online browsing at the DPDK project
website’. The release 2.2.0 contains also documen-
tation for the szedata2 PMD as a part of the DPDK
Network Interface Controller Drivers Guide [11].

The next goal of my work might be adding a sup-
port for the card configuration and management. The
network card address space is mapped to the mem-
ory of the PMD. An access to the card address space
allows implementation of configuration and control
functions. Currently, the functions for setting MAC
address check mode, getting link status, setting link
up and down are supported. The functions for setting
MAC addresses, maximum transmission unit, reading
hardware statistics and others are planned for a next
version.

The szedata2 PMD has been developed and bench-
marked on top of the DPDK version 2.1.0. The config-
uration of the system was:

e a host machine equipped with one COMBO-
100G card (information is summarized in Ta-
ble 1)

'ttp://dpdk.org/download
2http://dpdk.org/browse/dpdk/tree/
drivers/net/szedata2


http://dpdk.org/download
http://dpdk.org/browse/dpdk/tree/drivers/net/szedata2
http://dpdk.org/browse/dpdk/tree/drivers/net/szedata2

Table 1. Host Machine Information

CPUs ||2x Xeon(R) CPU E5-2660 v3 @ 2.60GHz
Cores |2x10 (2x20) - enabled Hyper-Threading
oS Scientific Linux release 6.5 (Carbon)
Kernel |[2.6.32-431.1.2.e16.x86_64

o Spirent Testcenter hardware tester used as packet
generator

o the host machine connected to the packet gener-
ator as displayed on Figure 6

100Gb/s Ethernet link

COMBO-100G NIC

SPIRENT hw generator

host machine

Figure 6. Illustration of benchmark setup.

e the DPDK application festpmd ran on the host
machine

COMBO kernel modules version 0.9.2

libsze2 version 1.1.4

DPDK version 2.1.0

COMBO-100G firmware NIC_100G1_LR4 with
8 receiving and 8 transmitting channels

Packet rates for the following cases have been mea-
sured:

1. Reception of unidirectional traffic - testpmd was
run with option --forward-mode=rxonly.

2. Transmission of unidirectional traffic - testpmd
was run with option --forward-mode=txonly.

3. Bidirectional traffic forwarding (received data
was transmitted back through the same port) -
testpmd was run with option --forward-mode=io.

For each case the following configurations have
been measured:

1. 1 forwarding queue running on 1 physical core,
1 used logical core per physical core (label in
graphs 1C/1T)

2. 2 forwarding queues running on 1 physical core,
2 used logical cores per physical core (label in
graphs 1C/2T)

3. 2 forwarding queues running on 2 physical cores,
1 used logical core per physical core (label in
graphs 2C/1T)

4. 4 forwarding queues running on 2 physical cores,
2 used logical cores per physical core (label in
graphs 2C/2T)

5. 4 forwarding queues running on 4 physical cores,
1 used logical core per physical core (label in
graphs 4C/1T)

6. 8 forwarding queues running on 4 physical cores,
2 used logical cores per physical core (label in
graphs 4C/2T)

7. 8 forwarding queues running on 8 physical cores,
1 used logical core per physical core (label in
graphs 8C/1T)

Frame sizes 64, 128, 256,512, 1024, 1280, 1518 as
suggested by RFC 2544 [12] have been used for each
configuration. The statistics for the reception case
were counted using ibufctl application®. The counters
from the Spirent Testcenter were used for the transmis-
sion and forwarding cases.

Figure 7 displays measured results of packet rates
for all stated cases and configurations.
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Figure 7. Packet rates for unidirectional reception,
transmission and bidirectional forwarding. A column
EthMax represents theoretical maximum value for the

100G Ethernet.

3application for accessing the registers from the COMBO
card’s IBUF component




The data reception at 100 Gb/s wirespeed has been
achieved with 8 CPU cores for 64 B long frames. 4
cores have been needed for 128 B long frames and
from 256 B the wirespeed has been achieved with 2
cores.

The data transmission at 100 Gb/s wirespeed has
been achieved with 8 CPU cores for 128 B long frames.
From the 256 B long frames, only 4 cores have been
sufficient.

A bidirectional traffic can be handled at more than
90% rates of 100 Gb/s wirespeed with 8 CPU cores
even for 64 B long frames.

This paper describes implementation of the DPDK
szedata2 PMD which connects the SZE?2 interface of
COMBO network cards through the libsze2 library
to the DPDK. The driver has become a part of the
DPDK mainline since the release 2.2.0. Packets trans-
ferred through the SZE2 interface are aggregated into
continuous buffers to reduce the number of required
PCI-Express transactions. Due to this fact, the data
has to be copied from SZE2 buffers into DPDK mbufs
resulting in a higher load of the host’s memory subsys-
tem.

The set of benchmarks has been performed to mea-
sure the performance of the szedata2 PMD. The net-
work card COMBO-100G can handle 64 B long frames
using multiple CPU cores at rates:

e over 140 Mpps in unidirectional reception and
transmission
e up to 134 Mpps in bidirectional traffic

This paper shows that DPDK applications can re-
ceive and transmit data through COMBO-100G card
at 100 Gb/s Ethernet wirespeed.

Further work is needed to implement more man-
agement and configuration functions for COMBO cards
in the DPDK driver. Currently, the szedata2 PMD
depends on kernel modules for COMBO cards and
libsze2 library. In the future, the kernel modules func-
tionality could be integrated into the szedata2 PMD
and the proprietary dependencies could be removed.
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